Формы нахождения атомов химических элементов в земной коре. Водород в природе (0,9% в Земной коре) Области применения водорода


До сих пор, говоря об атомной теории, о том, как из нескольких сортов атомов, соединенных между собой в разном порядке, получаются совершенно непохожие друг на друга вещества, мы ни разу не задались «детским» вопросом - а откуда взялись сами атомы? Почему атомов одних элементов очень много, а других - очень мало, и рас-пространены они очень неравномерно. Например, всего один элемент (кислород) составляет половину земной коры. Три элемента (кислород, кремний и алюминий) в сумме составляют уже 85 %, а если к ним добавить железо, кальний, натрий, калий, магний и титан, то получим уже 99,5 % земной коры. На долю же нескольких десятков остальных элементов приходится всего 0,5 %. Самый редкий на Земле металл - рений, да и золота с платиной не так уж много, не зря они такие дорогие. А вот другой пример: атомов железа в земной коре примерно в тысячу раз больше, чем атомов меди, атомов меди в тысячу раз больше, чем атомов серебра, а серебра в сто раз больше, чем рения.
Совсем иначе распределены элементы на Солнце: там больше всего водорода (70 %) и гелия (28 %), а всех остальных элементов - только 2 %, Если взять всю видимую Вселенную, то водорода в ней еще больше. Почему так? В древности и в Средние века вопросами о происхож-дении атомов не задавались, ибо считали, что они существовали в неизменном виде и количестве всегда {а по библейской традиции - были созданы Богом в один день творения). И даже когда атомистическая теория победила и химия начала бурно развиваться, а Д. И. Менделеев создаг свою знаменитую систему элементов, вопрос о происхождении атомов продолжал считаться несерьезным. Конечно, изредка кто-либо из ученых набирался смелости и предлагал свою теорию. Как уже говорилось. в 1815 году Уильям Праут высказал предположение, что все элементы произошли из атомов самого легкого элемента - водорода. Как писал Праут, водород-это та самая «первоматерия» древнегреческих фи-лософов. которая путем «сгущения» дала все остальные элементы.
В XX веке усилиями астрономов и физиков-теоретиков была создана научная теория происхождения атомов, которая в общих чертах отвечала на вопрос о происхождении химических элементов. Весьма упрощенно эта теория выглядит так. Вначале вся материя была сосре-доточена в одной точке с невероятно большой плотностью (К)*" г/см") и температурой (1027 К). Эти числа настолько велики, что для них даже не существует названий. Примерно 10 миллиардов лет назад в результате так называемого Большого взрыва эта сверхплотная и сверхгорячая точка начала быстро расширяться. Физики достаточно хорошо представляют себе, как развивались события спустя 0,01 секунды после взрыва. Теория же того, что происходило до этого, разработана значи-тельно хуже, поскольку в существовавшем тогда сгустке материи плохо выполнялись известные ныне физические законы (и чем раньше -тем хуже). Более того, вопрос о том, что было до Большого взрыва, по существу лаже не рассматривался, поскольку тогда не было самого времени! Ведь если нет материального мира, т. е. никаких событий, то откуда взяться времени? Кто или что будет его отсчитывать? Итак, материя начала стремительно разлетаться и остывать. Чем ниже температура, тем больше возможностей для образования разнообразных структур (например, при комнатной температуре могут существовать миллионы различных органических соединений, при +500 °С - лишь немногие, а выше +1000 °С, вероятно, никакие органические вещества существовать не могут, - все они при высокой температуре расщепляются на составные части). По оценкам ученых, через 3 минуты после взрыва, когда температура снизилась до миллиарда градусов, начался процесс нуклеосинтеза (это слово происходит от латинского nucleus - «ядро» и греческого «синтесис» - «соединение, сочетание»), т. е. процесс соединения протонов и нейтронов в ядра различных элементов. Помимо протонов - ядер водорода, появились и ядра гелия; эти ядра еще не могли присоединить электроны и образовать агомы из-за слишком высокой температуры. Первичная Вселенная состояла из водорода (примерно 75 %) и гелия с примесью небольшого количества следующего по массе элемента - лития (в его ядре три протона). Этот состав не изменялся примерно 500 тысяч лет. Вселенная продолжала расширяться, остывать и становилась все более разреженной. Когда температура снизилась до +3000 "С. электроны получили возможность соединяться с ядрами, что привело к образованию устойчивых атомов водорода и гелия.
Казалось бы, что и дальше Вселенная, состоящая из водорода и гелия, должна была расширяться и остывать до бесконечности. Но тогда не было бы не только других элементов, но и галактик, звезд, а также нас с вами. Бесконечному расширению Вселенной противодействовали силы всемирного тяготения (гравитации). Гравитационное сжатие материи в"разных частях разреженной Вселенной сопровождалось повторным сильным разогревом - наступила стадия массового образования звезд, которая продолжалась около 100 миллионов лет. В тех состоящих из газа и пыли областях пространства, где температура достигала 10 миллионов градусов, начинался процесс термоядерного синтеза гелия путем слияния ядер водорода. Эти ядерные реакции сопровождались выделением огромного количества энергии, которая излучалась в окружающее пространство: так загоралась новая звезда. Пока в ней было достаточно водорода, сжатию звезды под действием сил тяготения противодействовало излучение, которое «давило изнутри». Наше Солнце также светит за счет «сжигания» водорода. Идет этот процесс очень медленно, так как сближению двух положительно заряженных протонов препятствует сила кулоиовского отталкивания. Так что нашему светилу суждепы еше долгие годы жизни.
Когда запас водородного горючего подходит к концу, постепенно прекращается и синтез гелия, а вместе с ним затухает мощное излучение. Силы гравитации вновь сжимают звезду, температура повышается и становится возможным слияние лруг с другом уже ядер гелия с образованием ядер углерода (6 протонов) и кислорода (8 протонов в ядре). Эти ядерные процессы также сопровождаются выделением энергии. Но и запасам гелия рано или поздно приходит конец. И тогда наступает третий этап сжатия звезды силами гравитации. А дальше все зависит от массы звезды на этом этапе. Если масса не очень велика (как у нашего Солнца), то эффект от повышения температуры при сжатии звезды будет недостаточен, чтобы углерод и кислород могли вступить в дальнейшие реакции ядерного синтеза; такая звезда становится так называемым белым карликом. Более тяжелые элементы «изготовлены» в звездах, которые астрономы называют красными гигантами - их масса в несколько раз больше массы Солнца. В этих звездах и идут реакции синтеза более тяжелых элементов из углерода и кислорода. Как образно выражаются астрономы, звезды - это ядерные костры, зола которых - тяжелые химические элементы.
33
2- 1822
Выделяющаяся на этом этапе жизни звезды энергия сильно «раздувает» внешние слои красного гиганта; если бы наше Солнце стало такой звездой. Земля оказалась бы внутри этого гигантского шара - перспектива для всего земного не самая приятная. Звездный ветер.
«дуюшии» с поверхности красных гигантов, выносит к космическое пространство синтезированные этими шсздами химические элементы, которые образуют туманности (многие из них видны в телескоп). Красные гиганты живут сравнительно недолго - в сотни раз меньше, чем Солнце. Если масса такой звезды превышает массу Солнца в 10 раз, тогда возникают условия (температура порядка миллиарда градусов) для синтеза элементов вплоть до железа. Ялро железа - наиболее стабильное из всех ядер. Это означает, что реакции синтеза элементов, которые легче железа, идут с выделением энергии, тогда как синтез более тяжелых элементов требует затрат энергии. С затратой энергии идут и реакции распада железа на более легкие элементы. Поэтому в звездах, достигших «железной» стадии развития, происходят драматические процессы: вместо выделения энергии идет ее поглощение, что сопровождается быстрым понижением температуры и сжатием до очень маленького объема; астрономы называют этот процесс гравитационным коллапсом (от латинского слова collapsus - «ослабевший, упавший»; недаром медики так называют внезапное падение кровяного давления, что очень опасно для человека). В ходе гравитационного коллапса образуется огромное число нейтронов, которые, благодаря отсутствию заряда, легко проникают в ядра всех имеющихся элементов. Пересыщенные нейтронами ядра претерпевают особое превращение (его называют бета-распадом), в ходе которого из нейтрона образуется протон; в результате из ядра данного элемента получается следующий элемент, в ядре которого уже одним протоном больше. Ученые научились воспроизводить такие процессы в земных условиях; хорошо известный пример - синтез изотопа плутония-239, когда при облучении нейтронами природного урана (92 протона, 146 нейтронов) его ядро захватывает один нейтрон и образуется искусственный элемент нептуний (93 протона, 146 нейтронов), а из него -тот самый смертоносный плутоний (94 протона, 145 нейтронов), который используется в атомных бомбах. В звездах же, которые претерпевают гравитационный коллапс, в результате захвата нейтронов и последующих бета-распадов образуются сотни различных ядер всех возможных изотопов химических элементов. Коллапс звезды заканчивается грандиозным взрывом, сопровождающимся выбросом огромной массы ве-щества в космическое пространство - образуется сверхновая звезда. Выброшенное вещество, содержащее все элементы из таблицы Менделеева (и в нашем теле содержатся те самые атомы!), разлетается по сторонам со скоростью до 10 ООО км/с. а небольшой остаток вещества погибшей звезды сжимается (коллаисирует) с образованием сверхплотной нейтронной звезды или даже черной дыры. Изредка такие звезды вспыхивают на нашем небосводе, и если вспышка произошла не слишком далеко, сверхновая звезда по яркости затмевает" все осталь- ные звезды. И не удивительно: яркость сверхновой звезды может превышать яркость целой галактики, состоящей из миллиарда звезд! Одна из таких «новых» звезд, в соответствии с китайскими хрониками, вспыхнула в 1054 году. Сейчас на этом месте находится известная Крабов ид ная туманность в созвездии Тельца, а в ее центре расположена бысгроврашающаяся (30 оборотов в секунду!) нейтронная звезда. К счастью (для нас, а не для синтеза новых элементов), такие звезды вспыхивали пока лишь в далеких галактиках...
В результате «горения» звезд н взрыва сверхновых звезд в космическом пространстве оказались вес известные химические элементы. Остатки сверхновых звезд в виде расширяющихся туманностей, «ра-зогретых» радиоактивными превращениями, сталкиваются друг с другом, конденсируются в плотные образования, из которых под действием гравитационных сил возникают звезды нового поколения. Эти звезды (в их числе и наше Солнце) уже с самого начала существования содержат в своем составе примесь тяжелых элементов; такие же элементы содержатся и в окружающих эти звезды газопылевых облаках, из которых Образуются планеты. Так что элементы, входящие в состав всех окружающих нас вещей, в том числе и нашего тела, родились в результате грандиозных космических процессов...
Почему же одних элементов образовалось много, а других - мало? Оказывается, в процессе нуклеосинтеза с наибольшей вероятностью образуются ядра, состоящие из небольшого четною числа щютонов и нейтронов. Тяжелые ядра, «переполненные» протонами и нейтронами, менее устойчивы и их во Вселенной меньше. Существует общее правило: чем больше заряд ядра, чем оно тяжелее, тем меньше таких ядер во Вселенной. Однако это правило выполняется не всегда. Например, в земной коре мало легких ядер лития (3 протона, 3 нейтрона), бора (5 протонов и 5 или Ь нейтронов). Предполагают, что эти ядра по ряду причин не могут образоваться в недрах звезд, а под действием космических лучей «откалываются» от более тяжелых ядер, накопившихся в межзвездном пространстве. Таким образом, соотношение различных элементов на Земле - отголосок бурных процессов в космосе, которые происходили миллиарды лет назад, на более поздних этапах развития Вселенной.

Разное состояние атомов в твердом веществе земной коры В. И. Вернадский назвал формами нахождения элементов. В наше время представление об этих формах успешно используется геохимиками для решения практических задач при поисках месторождений полезных ископаемых.
Как нам уже известно, при достаточно большой концентрации атомы образуют кристаллохимические структуры со строго упорядоченным расположением. При очень низкой концентрации химического элемента его атомы не могут образовывать самостоятельные соединения. Если величина радиусов этих атомов соответствует имеющимся кристаллохимическим структурам, то атомы могут в них войти по законам изоморфизма. Если же такого соответствия нет, атомы остаются в твердом кристаллическом веществе в неупорядоченном рассеянном состоянии. Кристаллическое и рассеянное состояния являются двумя важнейшими формами нахождения атомов в земной коре. Преобладание той или другой формы зависит от значения кларка элемента.
Восемь химических элементов, содержащихся в земной коре в количестве более 1%, называются главными. Атомов этих элементов так много, что их большая часть находится в упорядоченном состоянии в кристаллическом веществе. К ним можно добавить второстепенные элементы, содержащиеся в количестве десятых долей процента. Все другие химические элементы, каждый из которых присутствует в земной коре в количестве меньше 0,1%, следует называть малораспространенными. Они ведут себя неодинаково. Одни из них способны концентрироваться в отдельных местах и образуют многочисленные самостоятельные минералы. Другие более или менее равномерно рассеяны в земной коре, редко или даже совсем не образуют минералов. Поэтому советский геохимик А. А. Беус предлагает подразделять малораспространенные химические элементы на минералогенные, т. е. образующие минералы, и рассеянные, их не образующие.
Строго говоря, атомы всех химических элементов имеются в рассеянном состоянии. Однако есть такие, которые совершенно не встречаются в виде самостоятельных соединений и полностью находятся в виде изоморфной примеси или в рассеянном состоянии. К ним относятся рубидий, большая часть редкоземельных элементов, гафний, индий, рений, все благородные газы, все радиоактивные элементы, кроме урана и тория.
В настоящее время под рассеянными элементами подразумевают малораспространенные элементы, находящиеся в неминералогической форме, т. е. входящие в состав минералов в виде такой незначительной примеси, что не могут быть отражены в химической формуле. Согласно подсчетам В. И. Вернадского, в 1 см3 твердого вещества земной коры присутствует такое числа атомов в рассеянном состоянии: лития.— .10й, брома — 1018, иттрия — 10", галлия — 1018 и т. д.

Водород (Н) очень легкий химический элемент, с содержанием в Земной коре 0,9% по массе, а в воде 11,19%.

Характеристика водорода

По легкости он первый среди газов. При нормальных условиях безвкусен, бесцветен, и абсолютно без запаха. При попадании в термосферу улетает в космос из-за малого веса.

Во всей вселенной это самый многочисленный химический элемент (75% от всей массы веществ). Настолько, что многие звезды в космическом пространстве состоят полностью из него. Например, Солнце. Его основной компонент - водород. А тепло и свет это итог выделения энергии при слиянии ядер материала. Так же в космосе есть целые облака из его молекул различной величины, плотности и температуры.

Физические свойства

Высокая температура и давление значительно меняют его качества, но при обычных условиях он:

Обладает высокой теплопроводностью, если сравнивать с другими газами,

Нетоксичен и плохо растворим в воде,

С плотностью 0,0899 г/л при 0°С и 1 атм.,

Превращается в жидкость при температуре -252,8°С

Становится твердым при -259,1°С.,

Удельная теплота сгорания 120,9.106 Дж/кг.

Для превращения в жидкость или твердое состояние требуются высокое давление и очень низкие температуры. В сжиженном состоянии он текуч и легок.

Химические свойства

Под давлением и при охлаждении (-252,87 гр. С) водород обретает жидкое состояние, которое по весу легче любого аналога. В нем он занимает меньше места, чем в газообразном виде.

Он типичный неметалл. В лабораториях его получают путем взаимодействия металлов (например, цинка или железа) с разбавленными кислотами. При обычных условиях малоактивен и вступает в реакцию только с активными неметаллами. Водород может отделять кислород из оксидов, и восстанавливать металлы из соединений. Он и его смеси образуют водородную связь с некоторыми элементами.

Газ хорошо растворяется в этаноле и во многих металлах, особенно в палладии. Серебро его не растворяет. Водород может окисляться во время сжигания в кислороде или на воздухе, и при взаимодействии с галогенами.

Во время соединения с кислородом, образуется вода. Если температура при этом обычная, то реакция идет медленно, если выше 550°С - со взрывом (превращается в гремучий газ).

Нахождение водорода в природе

Хотя водорода очень много на нашей планете, но в чистом виде его найти нелегко. Немного можно обнаружить при извержении вулканов, во время добычи нефти и в месте разложения органических веществ.

Больше половины всего количества находится в составе с водой. Так же он входит в структуру нефти, различной глины, горючих газов, животных и растений (присутствие в каждой живой клетке 50% по числу атомов).

Круговорот водорода в природе

Каждый год в водоемах и почве разлагается колоссальное количество (миллиарды тонн) остатков растений и это разложение выплескивает в атмосферу огромную массу водорода. Так же он выделяется при любом брожении, вызываемом бактериями, сжигании и наравне с кислородом участвует в круговороте воды.

Области применения водорода

Элемент активно используется человечеством в своей деятельности, поэтому мы научились получать его в промышленных масштабах для:

Метеорологии, химпроизводства;

Производства маргарина;

Как горючее для ракет (жидкий водород);

Электроэнергетики для охлаждения электрических генераторов;

Сварки и резки металлов.

Масса водорода используется при производстве синтетического бензина (для улучшения качества топлива низкого качества), аммиака, хлороводорода, спиртов, и других материалов. Атомная энергетика активно использует его изотопы.

Препарат «перекись водорода» широко применяют в металлургии, электронной промышленности, целлюлозно-бумажном производстве, при отбеливании льняных и хлопковых тканей, для изготовления красок для волос и косметики, полимеров и в медицине для обработки ран.

«Взрывной» характер этого газа может стать гибельным оружием - водородной бомбой. Ее взрыв сопровождается выбросом огромного количества радиоактивных веществ и губительно для всего живого.

Соприкосновение жидкого водорода и кожных покровов грозит сильным и болезненным обморожением.

Элементный состав живого вещества и ОВ горючих ископаемых

Горючие ископаемые содержат в своем составе те же элементы, что и вещество живых организмов, поэтому элементы - углерод, водород, кислород, азот, серу и фосфор называют или биогенными, или биофильными, или органогенными .

На долю водорода, углерода, кислорода и азота приходится более 99% как массы, так и числа атомов, входящих в состав всех живых организмов. Кроме них в значительных количествах в живых организмах могут концентрироваться еще око

ло 20-22 химических элементов. 12 элементов составляют 99,29 %, остальные 0,71%

Распространенность в космосе: Н, Не, С, N.

До 50% - C, до 20% - O, до 8% - H, 10-15% - N, 2-6% - P, 1% - S, 1% - K, ½% - Mg и Ca, 0,2% - Fe, в следовых количествах – Na, Mn, Cu, Zn.


Строение атома, изотопы, распространение в земной коре водорода, кислорода, серы и азота

ВОДОРОД - главный эл-т космоса, самый распространенный элемент Вселенной. Хим эл-т 1 группы, атомный номер 1, атомная масса 1,0079 . В современных изданиях таблицы Менделеева H располагают также в VII группе над F, так как некоторые св-ва H похожи на свойства галогенов. Известны три изотопа H. Два стабильные - это протий 1 Н – Р (99,985%), дейтерий 2 Н - D (0,015%), и один радиоактивный - тритий 3 Н - Т, Т 1/2 =12,262 лет. Искусственно получен еще один - четвертый крайне неустойчивый изотоп - 4 Н. В разделении Р и D в природных условиях основную роль играет испарение, однако, масса вод мирового океана так велика, что содержание дейтерия в нем изменяется слабо. В тропических странах содержание дейтерия в атмосферных осадках выше, чем в полярной зоне. В свободном состоянии H - бесцветный газ, без вкуса и запаха, самый легкий из всех газов, в 14,4 раза легче воздуха. H становится жидким при -252,6°С, твердым при -259,1°С. H - прекрасный восстановитель. Горит в O несветящимся пламенем, образуя воду. В земной коре H намного меньше, чем в звездах и на Солнце. Его весовой кларк в земной коре 1%. В природных химических соединениях Н образует ионные, ковалентные и водородные связи . Водородные связи играют важную роль в биополимерах (углеводах, спиртах, белках, нуклеиновых кислотах), определяют свойства и строение геополимеров керогена и молекул ГИ. При определенных условиях атом Н способен соединиться одновременно с двумя другими атомами. Как правило, с одним из них он образует прочную ковалентную связь, а с другим - слабую, она и получила название водородной связи .

КИСЛОРОД - Самый распространенный элемент земной коры, составляет в ней по массе 49,13%. O имеет порядковый номер 8, находится во 2 периоде, VI группе, атомная масса 15,9994. Известны три стабильных изотопа O - 16 О (99,759%), 17 О (0,0371%), 18 О (0,2039%). Долгоживущие радиоактивные изотопы O отсутствуют. Искусственный радиоактивный изотоп 15 О (Т 1/2 = 122 секунды). Применяется для геологических реконструкций соотношение изотопов 18 О/ 16 О, которое в природных объектах изменяется на 10% от 1/475 до 1/525. Наиболее низкий изотопный коэффициент имеют полюсные льды, наиболее высокий - СО 2 атмосферы. При сравнении изотопного состава пользуются величиной d 18 О , которое вычисляется по формуле: d 18 О ‰= . За стандарт принято среднее соотношение этих изотопов в океанической воде. Вариации изотопного состава O в гп, воде определяются температурой, при которой протекает процесс образования конкретных минералов. Чем ниже T, тем интенсивнее будет фракционирование изотопов. Полагают, что изотопный состав O океана за последние 500 млн. лет не менялся. Главным фактором, определяющим изотопный сдвиг (вариации изотопного состава в природе), является кинетический эффект, определяемый температурой прохождения реакций. O при обычных условиях газ, невидим, безвкусен, лишен запаха. В реакциях с подавляющим большинством атомов O выступает в роли окислителя . Лишь в реакции с F окислителем является F. O существует в двухаллотропных модификациях . Первая - молекулярный кислород - О 2 Вторая модификация – озон – О 3 , обр под действием электрических разрядов в воздухе и чистом O, в радиоактивных процессах, действием на обычный O ультрафиолетовых лучей. В природе О 3 образуется постоянно под действием УФ лучей в верхних слоях атмосферы. На высоте около 30-50 км существует «озоновый экран», задерживающий основную массу УФ лучей, защищая организмы биосферы от губительного действия этих лучей. При малых концентрациях у О 3 приятный, освежающий запах, но если в воздухе более 1% О 3 , он весьма токсичен.

АЗОТ - концентрируется в биосфере: он преобладает в атмосфере (75,31% по весу, 78,7% по объему), а в земной коре его весовой кларк - 0,045 %. Химический элемент V группы, 2 периода атомный номер 7, атомная масса 14,0067. Известны три изотопа N - два стабильных 14 N (99,635%) и 15 N (0,365 %) и радиоактивный 13 N , Т 1/2 = 10,08 мин. Общий разброс значений отношений 15 N/ 14 N невелик. Нефти обогащены изотопом 15 N, а сопутствующие природные газы обеднены им. Горючие сланцы также обогащены тяжелым изотопом.N 2 бесцветный газ, без вкуса и запаха.N в отличие от О не поддерживает дыхания, смесь N с О наиболее приемлема для дыхания большинства обитателей нашей планеты. N химически неактивен. Он входит в состав ЖВ всех организмов. Малая химическая активность азота определяется строением его молекулы. Как и у большинства газов, кроме инертных, молекула N состоит из двух атомов. В образовании связи между ними участвуют по 3 валентных электрона внешней оболочки каждого атома, образуется тройная ковалентная химическая связь , которая дает самую стабильную из всех известных двухатомных молекул. «Формальная» валентность от -3 до +5, «истинная» валентность 3. Образуя прочные ковалентные связи с O,H и C, он входит в состав комплексных ионов: - , - , + , которые дают легко растворимые соли.

СЕРА – эл-т ЗК, в мантии (ультраосновные породы) ее в 5 раз меньше, чем в литосфере. Кларк в ЗК - 0,1%. Хим эл-т VI группы,3 периода, атомный номер 16, атомная масса 32,06. Высоко электроотрицательный эл-т, проявляет неметаллические свойства. В водородных и кислородных соединениях находится в составе различных ионов. Обр кислоты и соли. Многие серосодерж соли малорастворимы в воде. S может обладать валентностями: (-2), (0), (+4), (+6), из них наиболее характерны первая и последняя. Характерны как ионные, так и ковалентнные связи. Основное значение для природных процессов имеет комплексный ион - 2 S - неметалл, хим активный элемент. Лишь с Au и Pt S не взаимодействует. Из неорг соединений кроме сульфатов, сульфидов и H2SO4 на Земле распространены оксиды SO 2 - газ, сильно загрязняющий атмосферу, и SO 3 (твердое вещество), а также сероводород. Для элементарной S характерно три аллотроп-ные разновидности : S ромбическая (наиболее устойчивая), S моноклинная (циклическая молекула - восьмичленное кольцо S 8) и пластическая S 6 - это линейные цепочки из шести атомов. В природе известны 4 стабильных изотопа S: 32 S (95,02%), 34 S (4,21%), 33 S (0,75%), 36 S (0,02%). Искусственный радиоактивный изотоп 35 S c Т 1/2 = 8,72 дня. За стандарт принята S троилита (FeS) из метеорита Каньона Диабло (32 S/ 34 S= 22,22) Реакции окисления и восстановления могут вызывать изотопный обмен, выражающийся в изотопном сдвиге. В природе - бактериальным путем, но возможен и термический. В природе к настоящему времени произошло четкое разделение S земной коры на 2 группы - биогенных сульфидов и газов, обогащенных легким изотопом 32 S, и сульфатов , входящих в соли океанической воды древних эвапоритов, гипсов, содержащих 34 S. Газы, сопутствующие нефтяным залежам, варьируют по изотопному составу и заметно отличаются от нефтей.

Химический состав земной коры был определен по результатам анализа много­численных образцов горных пород и минералов, выходящих на поверхность земли при горообразовательных процессах, а также взятых из горных выработок и глубоких буровых скважин.

В настоящее время земная кора изучена на глубину до 15-20 км. Она состоит из химических элементов, которые входят в состав горных пород.

Наибольшее распространение в земной коре имеют 46 элемен­тов, из них 8 составляют 97,2-98,8 % ее массы, 2 (кислород и кремний) -75 % массы Земли.

Первые 13 элементов (за исключением титана), наиболее час­то встречающиеся в земной коре, входят в состав органического вещества растений, участвуют во всех жизненно необходимых процессах и играют важную роль в плодородии почв. Большое количество элементов, участвующих в химических реакциях в нед­рах Земли, приводит к образованию самых разнообразных со­единений. Химические элементы, которых больше всего в лито­сфере, входят в состав многих минералов (из них в основном со­стоят разные породы).

Отдельные химические элементы распределяются в геосферах следующим образом: кислород и водород заполняют гидросферу; кислород, водород и углерод составляют основу биосферы; кисло­род, водород, кремний и алюминий являются основными компо­нентами глин и песчаных пород или продуктов выветривания (они в основном составляют верхнюю часть коры Земли).

Химические элементы в природе находятся в самых различных соединениях, называемых минералами. Это однородные химичес­кие вещества земной коры, которые образовались вследствие сложных физико-химических или биохимических процессов, например каменная соль (NaCl), гипс (CaS04*2H20), ортоклаз (K2Al2Si6016).

В природе химические элементы принимают неодинаковое участие в образовании разных минералов. Например, кремний (Si) входит в состав более 600 минералов, а также очень распро­странен в форме окисей. Сера образует до 600 соединений, каль­ций-300, магний -200, марганец-150, бор - 80, калий - до 75, соединений лития известно только 10, а йода - еще меньше.

Среди наиболее известных минералов в земной коре преобладает большая группа полевых шпатов с тремя основными элементами - К, Na и Са. В почвообразующих породах и продук­тах их выветривания полевые шпаты занимают основное положе­ние. Полевые шпаты постепенно выветриваются (распадаются) и обогащают почву на К, Na, Са, Mg, Fe и другие зольные вещест­ва, а также микроэлементы.

Кла́рковое число́ - числа, выражающие среднее содержание химических элементов в земной коре, гидросфере, Земле, космических телах, геохимических или космохимических системах и др., по отношению к общей массе этой системы. Выражается в % или г/кг.

Виды кларков

Различают весовые (в %, в г/т или в г/г) и атомные (в % от числа атомов) кларки. Обобщение данных по химическому составу различных горных пород, слагающих земную кору, с учётом их распространения до глубин 16 км впервые было сделано американским учёным Ф. У. Кларком (1889). Полученные им числа процентного содержания химических элементов в составе земной коры, впоследствии несколько уточнённые А. Е. Ферсманом, по предложению последнего были названы числами Кларка или кларками.

Строение молекулы . Электрические, оптические, магнитные и другие свойства молекул связаны с волновыми функциями и энергиями различных состояний молекул. Информацию о состояниях молекул и вероятности перехода между ними дают молекулярные спектры.

Частоты колебаний в спектрах определяются массами атомов, их расположением и динамикой межатомных взаимодействий. Частоты в спектрах зависят от моментов инерции молекул, определение которых с спектроскопических данных позволяет получить точные значения межатомных расстояний в молекуле. Общее число линий и полос в колебательном спектре молекулы зависит от её симметрии.

Электронные переходы в молекулах характеризуют структуру их электронных оболочек и состояние химических связей. Спектры молекул, которые имеют большее количество связей, характеризуются длинноволновыми полосами поглощения, попадающими в видимую область. Вещества, которые построены из таких молекул, характеризуются окраской; к таким веществам относятся все органические красители.

Ионы. В результате переходов электронов образуются ионы – атомы или группы атомов, в которых число электронов не равно числу протонов. Если ион содержит отрицательно заряженных частиц больше, чем положительно заряженных, то такой ион называют отрицательным. В противоположном случае ион называют положительным. Ионы очень часто встречаются в веществах, например, они есть во всех без исключения металлах. Причина заключается в том, что один или несколько электронов от каждого атома металла отделяются и движутся внутри металла, образуя так называемый электронный газ. Именно из-за потери электронов, то есть отрицательных частиц, атомы металла становятся положительными ионами. Это справедливо для металлов в любом состоянии – твёрдом, жидком или газообразном.

Кристаллическая решётка моделирует расположение положительных ионов внутри кристалла однородного металлического вещества.

Известно, что в твёрдом состоянии все металлы являются кристаллами. Ионы всех металлов расположены упорядоченно, образуя кристаллическую решётку. В расплавленных и испарённых (газообразных) металлах упорядоченное расположение ионов отсутствует, но электронный газ по-прежнему остаётся между ионами.

Изото́пы - разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число. Можно также написать название элемента с добавлением через дефис массового числа. Некоторые изотопы имеют традиционные собственные названия (например, дейтерий, актинон).