Состав атомного ядра. Массовое число.Зарядовое число. Ядерные силы. Состав и строение атомного ядра (кратко) Какие силы обеспечивают устойчивость атомного ядра

§1 Заряд и масса, атомных ядер

Важнейшими характеристиками ядра являются его заряд и масса М .

Z - заряд ядра определяется количеством положительных элементарных зарядов сосредоточенных в ядре. Носителем положительного элементарного заряда р = 1,6021·10 -19 Кл в ядре является протон. Атом в целом нейтрален и заряд ядра определяет одновременно число электронов в атоме. Распределение электронов в атоме по энергетическим оболочкам и подоболочкам суще-ственно зависит от их общего числа в атоме. Поэтому заряд ядра в значительной мере определяет распределение электронов по их состояниям в атоме и положение элемента в периодической системе Менделеева. Заряд ядра равен q я = z · e , где z -зарядовое число ядра, равное порядковому номеру элемента в системе Менделеева.

Масса атомного ядра практически совпадает с массой атома, потому что масса электронов всех атомов, кроме водородного, составляет примерно 2,5· 10 -4 массы атомов. Массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята1/12 масса атома углерода .

1 ае.м. =1,6605655(86)·10 -27 кг.

m я = m a - Z m e .

Изотопами, называются разновидности атомов данного химического элемента, обладающие одинаковым зарядом, но различающееся массой.

Целое число ближайшее к атомной массе, выраженной в а.е. м . называется массовым число м и обозначается буквой А . Обозначение химического эле-мента: А - массовое число, X - символ химического элемента, Z -зарядовое чис-ло - порядковый номер в таблице Менделеева ():

Бериллий ; Изотопы: , ", .

Радиус ядра:

где А - массовое число.

§2 Состав ядра

Ядро атома водорода называется протоном

m протона = 1,00783 а.е.м. , .

Схема атома водорода

В 1932 г. была открыта частица названная нейтроном, обладающая мас-сой близкой к массе протона (m нейтрона = 1,00867 а.е.м.) и не имеющая электрического заряда. Тогда же Д.Д. Иваненко сформулировал гипотезу о протонно - нейтроном строении ядра: ядро состоит из протонов и нейтронов и их сумма равна массовому числу А . 3арядовое число Z определяет число протонов в ядре, число нейтронов N =А - Z .

Элементарные частицы - протоны и нейтроны, входящие в состав ядра , получили общее название нуклонов. Нуклоны ядер находятся в состояниях , существенно отличающихся от их свободных состояний. Между нуклонами осуществляется особое я де р ное взаимодействие. Говорят, что нуклон может находиться в двух «зарядовых состояниях» - протонном с зарядом + е , и ней-тронном с зарядом 0.

§3 Энергия связи ядра. Дефект массы. Ядерные силы

Ядерные частицы - протоны и нейтроны - прочно удерживаются внутри ядра, поэтому между ними действуют очень большие силы притяжения, спо-собные противостоять огромным силам отталкивания между одноименно за-ряженными протонами. Эти особые силы, возникающие на малых расстояниях между нуклонам, называются ядерными силами. Ядерные силы не являются электростатическими (кулоновскими).

Изучение ядра показало, что действующие между нуклонами ядерные силы обладают следующими особенностями:

а) это силы короткодействующие - проявляющееся на расстояниях порядка 10 -15 м и резко убывающие даже при незначительном увеличения рас-стояния;

б) ядерные силы не зависят от того, имеет ли частица (нуклон) заряд - за-рядовая независимость ядерных сил. Ядерные силы, действующие между нейтроном и протоном, между двумя нейтронами, между двумя протонами равны. Протон и нейтрон по отношению к ядерным силам одинаковы.

Энергия связи является мерой устойчивости атомного ядра. Энергия связи ядра равна работе, которую нужно совершить для расщепления ядра на со-ставляющие его нуклоны без сообщения им кинетической энергии

М Я < Σ(m p + m n )

Мя - масса ядра

Измерение масс ядер показывает, что масса покой ядра меньше, чем сумма масс покоя составляющих его нуклонов.

Величина

служит мерой энергия связи и называется дефектом массы.

Уравнение Эйнштейна в специальной теории относительности связывает энергию и массу покоя частицы.

В общем случае энергия связи ядра может быть подсчитана по формуле

где Z - зарядовое число (число протонов в ядре);

А - массовое число (общее число нуклонов в ядре);

m p , , m n и М я - масса протона, нейтрона а ядра

Дефект массы (Δm ) равны.й 1 а.е. м. (а.е.м. - атомная единица массы) со-ответствует энергий связи (Е св), равной 1 а.е.э. (а.е.э. - атомная единица энер-гии) и равной 1а.е.м.·с 2 = 931 МэВ.

§ 4 Ядерные реакции

Изменения ядер при взаимодействии их с отдельными частицами и друг с другом принято называть ядерными реакциями.

Различают следующие, наиболее часто встречающиеся ядерные реакции.

  1. Реакция превращения . В этом случае налетевшая частица остается в ядре, но промежуточное ядро испускает какую-либо другую частицу, поэто-му ядро - продукт отличается от ядра-мишени.
  1. Реакция радиационного захвата . Налетевшая частица застревает в ядре, но возбужденное ядро испускает избыточную энергию, излучая γ- фотон (используется в работе ядерных реакторов)

Пример реакции захвата нейтронов кадмием

или фосфором


  1. Рассеяние . Промежуточное ядро испускает частицу, тождественную

с налетевшей, причем может быть:

Упругое рассеяние нейтронов углеродом (используется в реакторах для замедления нейтронов):

Неупругое рассеяние :

  1. Реакция деления . Это реакция, идущая всегда с выделением энергии. Она является основой для технического получения и использования ядерной энергии. При реакции деления возбуждение промежуточного составного ядра столь велико, что оно делится на два, примерно равных осколка, с выде-лением нескольких нейтронов.

Если энергия возбуждения невелика, то разделение ядра не происходит, а ядро, потеряв избыток энергии путем испускания γ - фотона или нейтрона, воз-вратится в нормальное состояние (рис. 1). Но если вносимая нейтроном энер-гия велика, то возбужденное ядро начинает деформироваться, в нем образуется перетяжка и в результате оно делится на два осколка, разлетающихся с ог-ромными скоростями, при этом испускается два нейтрона
(рис. 2).

Цепная реакция - саморазвивающаяся реакция деления. Для осуществ-ления её необходимо, чтобы из вторичных нейтронов, образующихся при од-ном акте деления, хотя бы один смог вызвать следующий акт деления: (так как некоторые нейтроны могут участвовать в реакциях захвата не вызывая деле-ния) . Количественно условие существования цепной реакции выражает коэффициент размножения

k < 1 - цепная реакция невозможна, k = 1 (m = m кр ) - цепная реакций с по-стоянным количеством нейтронов (в ядерном реакторе}, k > 1 (m > m кр ) - ядерные бомбы.

РАДИОАКТИВНОСТЬ

§1 Естественная радиоактивность

Радиоактивность представляет собой самопроизвольное превращение неустойчивых ядер одного элемента в ядра другого элемента. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существую-щих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных ре-акций.

Типы радиоактивности:

  1. α-распад.

Испускание ядрами некоторых химических элементов α-системы двух протонов и двух нейтронов, соединенных воедино (а-частица - ядро атома ге-лия )

α-распад присущ тяжелым ядрам с А > 200 и Z > 82. При движении в веще-стве α-частицы производят на своем пути сильную ионизацию атомов (иони-зация - отрыв электронов от атома), действуя на них своим электрическим полем. Расстояние, на которое пролетает α-частица в веществе до полной её остановки, называется пробегом частицы или проникающей способностью (обозначается R , [ R ] = м, см). . При нормальных условиях α- частица образует в воздухе 30000 пар ионов на 1 см пути. Удельной ионизаци-ей называется число пар ионов образующихся на 1 см длины пробега. α- частица оказывает сильное биологическое действие.

Правило смещения для α-распада:

2. β-распад.

а) электронный (β -): ядро испускает электрон и электронное антинейтрино

б) позитронный (β +):ядро испускает позитрон и нейтрино

Эта процессы происходят, путем превращения одного вида нуклона в яд-ре в другой: нейтрона в протон или протона в нейтрон.

Электронов в ядре нет, они образуются в результате взаимного превра-щения нуклонов.

Позитрон - частица, отличающаяся от электрона только знаком за-ряда (+е = 1,6·10 -19 Кл)

Из эксперимента следует, что при β - распаде изотопы теряют одинаковое количество энергии. Следовательно, на основании закона сохранения энергии В. Паули предсказал, что выбрасывается еще одна легкая частица, названная антинейтрино. Антинейтрино не имеет заряда и массы. Потери энергии β - частицами при прохождении их через вещество вызываются, главным обра-зом, процессами ионизации. Часть энергии теряется на рентгеновское излуче-ние при торможении β - частицы ядрами поглощающего вещества. Так как β - частицы обладают малой массой, единичным зарядом и очень большими скоростями, то их ионизирующая способность невелика, (в 100 раз меньше, чем у α - частиц), следовательно, проникающая способность (пробег) у β - частиц суще-ственно больше, чем у α - частиц.

R β воздуха =200 м, R β Pb ≈ 3 мм

β - - распад происходит у естественных и искусственных радиоактивных ядер. β + - только при искусственной радиоактивности.

Правило смещения для β - - распада :

в) К - захват (электронный захват) - ядро поглощает один из электронов, находящихся на оболочке К (реже L или М ) своего атома, в результате чего один из протонов превращается а нейтрон, испуская при этом нейтрино

Схема К - захвата:

Место е электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышележащих слоев, в результате чего возникают рентгеновские лучи.

  • γ-лучи.

Обычно все типы радиоактивности сопровождаются испусканием γ- лучей. γ-лучи - это электромагнитное излучение, обладающее длинами волн от одного до сотых долей ангстрем λ’=~ 1-0,01 Å=10 -10 -10 -12 м. Энергия γ-лучей достигает миллионов эВ.

W γ ~ MэB

1эВ=1,6·10 -19 Дж

Ядро, испытывающее радиоактивный распад, как правило, оказывается возбужденным, н его переход в основное состояние сопровождается испуска-нием γ - фотона. При этом энергия γ-фотона определяется условием

где Е 2 и E 1 -энергия ядра.

Е 2 - энергия в возбужденном состоянии;

Е 1 - энергия в основном состоянии.

Поглощение γ-лучей веществом обусловлено тремя основными процессами:

  • фотоэффектом (при hv < l MэB);
  • образованием пар электрон - позитрон;

или

  • рассеяние (эффект Комптона) -

Поглощение γ-лучей происходит по закону Бугера:

где μ- линейный коэффициент ослабления, зависящий от энергий γ - лучей и свойств среды;

І 0 - интенсивность падающего параллельного пучка;

I - интенсивность пучка после прохождения вещества толщиной х см.

γ-лучи - одно из наиболее проникающих излучений. Для наиболее жест-ких лучей (hν max ) толщина слоя половинного поглощения равна в свинце 1,6 см, в железе - 2,4 см, в алюминии - 12 см, в земле - 15 см.

§2 Основной закон радиоактивного распада.

Число распавшихся ядер dN пропорционально первоначальному числу ядер N и времени распада dt , dN ~ N dt . Основной закон радиоактивного распада в дифференциальной форме:

Коэффициент λ называется постоянной распада для данного вида ядер. Знак “-“ означает, что dN должно быть отрицательным, так как конечное чис-ло не распавшихся ядер меньше начального.

следовательно, λ характеризует долю ядер, распадающихся за единицу време-ни, т е. определяет скорость радиоактивного распада. λ не зависит от внешних условий, а определяется лишь внутренними свойствами ядер. [λ]=с -1 .

Основной закон радиоактивного распада в интегральной форме

где N 0 - первоначальное число радиоактивных ядер при t =0;

N - число не распавшихся ядер в момент времени t ;

λ - постоянная радиоактивного распада.

О скорости распада на практике судят используя не λ, а Т 1/2 - период по-лураспада - время, за которое распадается половина первоначального количества ядер. Связь Т 1/2 и λ

Т 1/2 U 238 = 4,5·10 6 лет, Т 1/2 Ra = 1590 лет, Т 1/2 Rn = 3,825 сут. Число распадов в единицу времени А = - dN / dt называется активностью данного радиоактивного вещества.

Из

следует,

[А] = 1Беккерель = 1распад/1с;

[А] = 1Ки = 1Кюри= 3,7·10 10 Бк.

Закон изменения активности

где А 0 =λ N 0 - начальная активность в момент времени t = 0;

А - активность в момент времени t .

Атом состоит из положительно заряженного ядра и окружающих его электронов. Атомные ядра имеют размеры примерно 10 -14 … 10 -15 м (линейные размеры атома – 10 -10 м).

Атомное ядро состоит из элементарных частиц  протонов и нейтронов. Протонно-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко, а впоследствии развита В. Гейзенбергом.

Протон (р ) имеет положительный заряд, равный заряду электрона, и массу покоят p = 1,6726∙10 -27 кг 1836m e , гдеm e масса электрона. Нейтрон (n )нейтральная частица с массой покояm n = 1,6749∙10 -27 кг 1839т e ,. Массу протонов и нейтронов часто выражают в других единицах – в атомных единицах массы (а.е.м., единица массы, равная 1/12 массы атома углерода

). Массы протона и нейтрона равны приблизительно одной атомной единице массы. Протоны и нейтроны называют­сянуклонами (от лат.nucleus ядро). Общее число нуклонов в атомном ядре называ­етсямассовым числомА ).

Радиусы ядер возрастают с увеличением массового числа в соответствии с соотношением R = 1,4А 1/3 10 -13 см.

Эксперименты показывают, что ядра не имеют резких границ. В центре ядра существует определенная плотность ядерного вещества, и она постепенно уменьшается до нуля с увеличением расстояния от центра. Из-за отсутствия четко определенной границы ядра его «радиус» определяется как расстояние от центра, на котором плотность ядерного вещества уменьшается в два раза. Среднее распределение плотности материи для большинства ядер оказывается не просто сферическим. Большинство ядер деформировано. Часто ядра имеют форму вытянутых или сплющенных эллипсоидов

Атомное ядро характеризуетсязарядом Ze, гдеZ зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева.

Ядро обозначается тем же символом, что и нейтральный атом:

, гдеX символ химического элемента,Z атомный номер (число протонов в ядре),А массовое число (число нуклонов в ядре). Массовое числоА приблизительно равно массе ядра в атомных единицах массы.

Так как атом нейтрален, то заряд ядра Z определяет и число электронов в атоме. От числа электронов зависитих распределение по состояниям в атоме. Заряд ядра определяет специфику данного химического элемента, т. е. определяет число электро­нов в атоме, конфигурациюих электронных оболочек, величину и характер внутри­атомного электрического поля.

Ядра с одинаковыми зарядовыми числами Z , но с разными массовыми числамиА (т. е. с разными числами нейтронов N = A – Z ), называются изотопами, а ядра с одинаковымиА, но разнымиZ – изобарами. Например, водород (Z = l) имеет три изотопа: Н – протий (Z = l,N = 0), Н – дейтерий (Z = l,N = 1), Н – тритий (Z = l,N = 2), олово – десять изотопов и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами.

Е , МэВ

Уровни энергии

и наблюдаемые переходы для ядра атома бора

Квантовая теория строго ограничивает значения энергий, которыми могут обладать составные части ядер. Совокупности протонов и нейтронов в ядрах могут находиться только в определенных дискретных энергетических состояниях, характерных для данного изотопа.

Когда электрон переходит из более высокого в более низкое энергетическое состояние, разность энергий излучается в виде фотона. Энергия этих фотонов имеет порядок нескольких электронвольт. Для ядер энергии уровней лежат в интервале примерно от 1 до 10 МэВ. При переходах между этими уровнями испускаются фотоны очень больших энергий (γ–кванты). Для иллюстрации таких переходов на рис. 6.1 приведены пять первых уровней энергии ядра

.Вертикальными линиями указаны наблюдаемые переходы. Например, γквант с энергией 1,43 МэВ испускается при переходе ядра из состояния с энергией 3,58 МэВ в состояние с энергией 2,15 МэВ.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см.). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом .
В некоторых редких случаях могут образовываться короткоживущие экзотические атомы, у которых вместо нуклона ядром служат иные частицы.

Количество протонов в ядре называется его зарядовым числом Z {\displaystyle Z} - это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом N {\displaystyle N} . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом A {\displaystyle A} ( A = N + Z {\displaystyle A=N+Z} ) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами.

Энциклопедичный YouTube

    Строение атомного ядра. Ядерные силы

    Ядерные силы Энергия связи частиц в ядре Деление ядер урана Цепная реакция

    Строение атомного ядра Ядерные силы

    Химия. Строение атома: Атомное ядро. Центр онлайн-обучения «Фоксфорд»

    Ядерные реакции

    Субтитры

История

Рассеяние заряженных частиц может быть объяснено, если предположить такой атом, который состоит из центрального электрического заряда, сосредоточенного в точке и окружённого однородным сферическим распределением противоположного электричества равной величины. При таком устройстве атома α- и β-частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала.

Таким образом Резерфорд открыл атомное ядро, с этого момента и ведёт начало ядерная физика, изучающая строение и свойства атомных ядер.

После обнаружения стабильных изотопов элементов, ядру самого лёгкого атома была отведена роль структурной частицы всех ядер. С 1920 года ядро атома водорода имеет официальный термин - протон. После промежуточной протон-электронной теории строения ядра, имевшей немало явных недостатков, в первую очередь она противоречила экспериментальным результатам измерений спинов и магнитных моментов ядер, в 1932 году Джеймсом Чедвиком была открыта новая электрически нейтральная частица, названная нейтроном. В том же году Иваненко и, независимо, Гейзенберг выдвинули гипотезу о протон-нейтронной структуре ядра. В дальнейшем, с развитием ядерной физики и её приложений, эта гипотеза была полностью подтверждена.

Теории строения атомного ядра

В процессе развития физики выдвигались различные гипотезы строения атомного ядра; тем не менее, каждая из них способна описать лишь ограниченную совокупность ядерных свойств. Некоторые модели могут взаимоисключать друг друга.

Наиболее известными являются следующие:

  • Капельная модель ядра - предложена в 1936 году Нильсом Бором.
  • Оболочечная модель ядра - предложена в 30-х годах XX века.
  • Обобщённая модель Бора - Моттельсона
  • Кластерная модель ядра
  • Модель нуклонных ассоциаций
  • Сверхтекучая модель ядра
  • Статистическая модель ядра

Ядерно-физические характеристики

Впервые заряды атомных ядер определил Генри Мозли в 1913 году. Свои экспериментальные наблюдения учёный интерпретировал зависимостью длины волны рентгеновского излучения от некоторой константы Z {\displaystyle Z} , изменяющейся на единицу от элемента к элементу и равной единице для водорода:

1 / λ = a Z − b {\displaystyle {\sqrt {1/\lambda }}=aZ-b} , где

A {\displaystyle a} и b {\displaystyle b} - постоянные.

Из чего Мозли сделал вывод, что найденная в его опытах константа атома, определяющая длину волны характеристического рентгеновского излучения и совпадающая с порядковым номером элемента, может быть только зарядом атомного ядра, что стало известно под названием закон Мозли .

Масса

Из-за разницы в числе нейтронов A − Z {\displaystyle A-Z} изотопы элемента имеют разную массу M (A , Z) {\displaystyle M(A,Z)} , которая является важной характеристикой ядра. В ядерной физике массу ядер принято измерять в атомных единицах массы (а. е. м. ), за одну а. е. м. принимают 1/12 часть массы нуклида 12 C . Следует отметить, что стандартная масса, которая обычно приводится для нуклида - это масса нейтрального атома. Для определения массы ядра нужно из массы атома вычесть сумму масс всех электронов (более точное значение получится, если учесть ещё и энергию связи электронов с ядром).

Кроме того, в ядерной физике часто используется энергетический эквивалент массы. Согласно соотношению Эйнштейна, каждому значению массы M {\displaystyle M} соответствует полная энергия:

E = M c 2 {\displaystyle E=Mc^{2}} , где c {\displaystyle c} - скорость света в вакууме.

Соотношение между а. е. м. и её энергетическим эквивалентом в джоулях:

E 1 = 1 , 660539 ⋅ 10 − 27 ⋅ (2 , 997925 ⋅ 10 8) 2 = 1 , 492418 ⋅ 10 − 10 {\displaystyle E_{1}=1,660539\cdot 10^{-27}\cdot (2,997925\cdot 10^{8})^{2}=1,492418\cdot 10^{-10}} , E 1 = 931 , 494 {\displaystyle E_{1}=931,494} .

Радиус

Анализ распада тяжёлых ядер уточнил оценку Резерфорда и связал радиус ядра с массовым числом простым соотношением:

R = r 0 A 1 / 3 {\displaystyle R=r_{0}A^{1/3}} ,

где - константа.

Так как радиус ядра не является чисто геометрической характеристикой и связан прежде всего с радиусом действия ядерных сил, то значение r 0 {\displaystyle r_{0}} зависит от процесса, при анализе которого получено значение R {\displaystyle R} , усреднённое значение r 0 = 1 , 23 ⋅ 10 − 15 {\displaystyle r_{0}=1,23\cdot 10^{-15}} м, таким образом радиус ядра в метрах:

R = 1 , 23 ⋅ 10 − 15 A 1 / 3 {\displaystyle R=1,23\cdot 10^{-15}A^{1/3}} .

Моменты ядра

Как и составляющие его нуклоны, ядро имеет собственные моменты.

Спин

Поскольку нуклоны обладают собственным механическим моментом, или спином, равным 1 / 2 {\displaystyle 1/2} , то и ядра должны иметь механические моменты. Кроме того, нуклоны участвуют в ядре в орбитальном движении, которое также характеризуется определённым моментом количества движения каждого нуклона. Орбитальные моменты принимают только целочисленные значения ℏ {\displaystyle \hbar } (постоянная Дирака). Все механические моменты нуклонов, как спины, так и орбитальные, суммируются алгебраически и составляют спин ядра.

Несмотря на то, что число нуклонов в ядре может быть очень велико, спины ядер обычно невелики и составляют не более нескольких ℏ {\displaystyle \hbar } , что объясняется особенностью взаимодействия одноимённых нуклонов. Все парные протоны и нейтроны взаимодействуют только так, что их спины взаимно компенсируются, то есть пары всегда взаимодействуют с антипараллельными спинами. Суммарный орбитальный момент пары также всегда равен нулю. В результате ядра, состоящие из чётного числа протонов и чётного числа нейтронов, не имеют механического момента. Отличные от нуля спины существуют только у ядер, имеющих в своём составе непарные нуклоны, спин такого нуклона суммируется с его же орбитальным моментом и имеет какое-либо полуцелое значение: 1/2, 3/2, 5/2. Ядра нечётно-нечётного состава имеют целочисленные спины: 1, 2, 3 и т. д. .

Магнитный момент

Измерения спинов стали возможными благодаря наличию непосредственно связанных с ними магнитных моментов. Они измеряются в магнетонах и у различных ядер равны от −2 до +5 ядерных магнетонов. Из-за относительно большой массы нуклонов магнитные моменты ядер очень малы по сравнению с магнитными моментами электронов, поэтому их измерение гораздо сложнее. Как и спины, магнитные моменты измеряются спектроскопическими методами, наиболее точным является метод ядерного магнитного резонанса.

Магнитный момент чётно-чётных пар, как и спин, равен нулю. Магнитные моменты ядер с непарными нуклонами образуются собственными моментами этих нуклонов и моментом, связанным с орбитальным движением непарного протона.

Электрический квадрупольный момент

Атомные ядра, спин которых больше или равен единице, имеют отличные от нуля квадрупольные моменты, что говорит об их не точно сферической форме. Квадрупольный момент имеет знак плюс, если ядро вытянуто вдоль оси спина (веретенообразное тело), и знак минус, если ядро растянуто в плоскости, перпендикулярной оси спина (чечевицеобразное тело). Известны ядра с положительными и отрицательными квадрупольными моментами. Отсутствие сферической симметрии у электрического поля, создаваемого ядром с ненулевым квадрупольным моментом, приводит к образованию дополнительных энергетических уровней атомных электронов и появлению в спектрах атомов линий сверхтонкой структуры, расстояния между которыми зависят от квадрупольного момента.

Энергия связи

Устойчивость ядер

Из факта убывания средней энергии связи для нуклидов с массовыми числами больше или меньше 50-60 следует, что для ядер с малыми A {\displaystyle A} энергетически выгоден процесс слияния - термоядерный синтез, приводящий к увеличению массового числа, а для ядер с большими A {\displaystyle A} - процесс деления. В настоящее время оба этих процесса, приводящих к выделению энергии, осуществлены, причём последний лежит в основе современной ядерной энергетики, а первый находится в стадии разработки.

Детальные исследования показали, что устойчивость ядер также существенно зависит от параметра N / Z {\displaystyle N/Z} - отношения чисел нейтронов и протонов. В среднем для наиболее стабильных ядер N / Z ≈ 1 + 0.015 A 2 / 3 {\displaystyle N/Z\approx 1+0.015A^{2/3}} , поэтому ядра лёгких нуклидов наиболее устойчивы при N ≈ Z {\displaystyle N\approx Z} , а с ростом массового числа всё более заметным становится электростатическое отталкивание между протонами, и область устойчивости сдвигается в сторону N > Z {\displaystyle N>Z} (см. поясняющий рисунок ).

Если рассмотреть таблицу стабильных нуклидов, встречающихся в природе, можно обратить внимание на их распределение по чётным и нечётным значениям Z {\displaystyle Z} и N {\displaystyle N} . Все ядра с нечётными значениями этих величин являются ядрами лёгких нуклидов 1 2 H {\displaystyle {}_{1}^{2}{\textrm {H}}} , 3 6 Li {\displaystyle {}_{3}^{6}{\textrm {Li}}} , 5 10 B {\displaystyle {}_{5}^{10}{\textrm {B}}} , 7 14 N {\displaystyle {}_{7}^{14}{\textrm {N}}} . Среди изобар с нечётными A, как правило, стабилен лишь один. В случае же чётных A {\displaystyle A} часто встречаются по два, три и более стабильных изобар, следовательно, наиболее стабильны чётно-чётные, наименее - нечётно-нечётные. Это явления свидетельствует о том, что как нейтроны, так и протоны, проявляют тенденцию группироваться парами с антипараллельными спинами, что приводит к нарушению плавности вышеописанной зависимости энергии связи от A {\displaystyle A} .

Таким образом, чётность числа протонов или нейтронов создаёт некоторый запас устойчивости, который приводит к возможности существования нескольких стабильных нуклидов, различающихся соответственно по числу нейтронов для изотопов и по числу протонов для изотонов. Также чётность числа нейтронов в составе тяжёлых ядер определяет их способность делиться под воздействием нейтронов.

Ядерные силы

Ядерные силы - это силы, удерживающие нуклоны в ядре, представляющие собой большие силы притяжения, действующие только на малых расстояниях. Они обладают свойствами насыщения, в связи с чем ядерным силам приписывается обменный характер (с помощью пи-мезонов). Ядерные силы зависят от спина, не зависят от электрического заряда и не являются центральными силами.

Уровни ядра

В отличие от свободных частиц, для которых энергия может принимать любые значения (так называемый непрерывный спектр), связанные частицы (то есть частицы, кинетическая энергия которых меньше абсолютного значения потенциальной), согласно квантовой механике, могут находиться в состояниях только с определёнными дискретными значениями энергий, так называемый дискретный спектр. Так как ядро - система связанных нуклонов, оно обладает дискретным спектром энергий. Обычно оно находится в наиболее низком энергетическом состоянии, называемым основным . Если передать ядру энергию, оно перейдёт в возбуждённое состояние .

Расположение энергетических уровней ядра в первом приближении:

D = a e − b E ∗ {\displaystyle D=ae^{-b{\sqrt {E^{*}}}}} , где:

D {\displaystyle D} - среднее расстояние между уровнями,

Состав и характеристика атомного ядра .

Ядро простейшего атома - атома водорода - состоит из одной элементарной частицы, называемой протоном. Ядра всех остальных атомов состоят из двух видов элементарных частиц - протонов и нейтронов. Эти частицы носят название нуклонов.

Протон . Протоно (p) обладает зарядом +eи массой

m p = 938,28 МэВ

Для сравнения укажем, что масса электрона равна

m e = 0,511 МэВ

Из сопоставления и следует, что m p = 1836m e

Протон имеет спин, равный половине (s=), и собственный магнитный момент

Единица магнитного момента, называемая ядерным магнетоном. Из сравнения масс протона и электрона вытекает, что μ я в 1836 раз меньше магнетона Бора μ б. Следовательно, собственный магнитный момент протона примерно в 660 раз меньше, чем магнитный момент электрона.

Нейтрон . Нейтрон (n) был открыт в 1932 г. английским физи­ком

Д. Чедвиком. Электрический заряд этой частицы равен нулю, а масса

m n = 939,57МэВ

очень близка к массе протона. Разность масс нейтрона и протона (m n –m p)

составляет 1,3 МэВ, т.е. 2,5 m e .

Нейтрон обладает спином, равным половине (s=) и (не­смотря на отсутствие электрического заряда) собственным магнитным моментом

μ n = - 1,91μ я

(знак минус указывает на то, что направления собственных механи­ческого и магнитного моментов противоположны). Объяснение этого удивительного факта будет дано позже.

Отметим, что отношение экспериментальных значений μ p и μ n с большой степенью точности равно - 3/2 . Это было замечено лишь после того, как такое значение было получено теоретически.

В свободном состоянии нейтрон нестабилен (радиоактивен) – он самопроизвольно распадается, превращаясь в протон и испуская электрон (e -) и еще одну частицу, называемую антинейтрино

. Период полураспада (т.е. время, за которое распадается половина первоначального количества нейтронов) равен примерно 12 мин. Схе­му распада можно написать следующим образом:

Масса покоя антинейтрино равна нулю. Масса нейтрона больше массы прото­на на 2,5m e . Следовательно, масса нейтрона превышает суммарную массу частиц, фигурирующих в правой части уравнения на 1,5m e , т.е. на 0,77 МэВ. Эта энергия выделяется при распаде нейтрона в виде кинетической энергии образующихся частиц.

Характеристики атомного ядра . Одной из важнейших характерис­тик атомного ядра является зарядовое числоZ. Оно равно коли­честву протонов, входящих в состав ядра, и определяет его заряд, который равен +Z e . ЧислоZопределяет порядковый номер химичес­кого элемента в периодической таблице Менделеева. Поэтому его так­же называют атомным номером ядра.

Число нуклонов (т.е. суммарное число протонов и нейтронов) в ядре обозначается буквой А и называется массовым числом ядра. Число нейтронов в ядре равно N=A–Z.

Для обозначения ядер применяется символ

где под Xподразумевается химический символ данного элемента. Слева вверху ставится массовое число, слева внизу – атомный номер (последний значок часто опускают). Иногда массовое число пишут не слева, а справа от символа химического элемента

Ядра с одинаковым Z, но разными А называютсяизотопами . Большинство химических элементов имеет по несколько стабильных изотопов. Так, например, у кислорода имеется три стабильных изотопа:

, у олова - десять, и т.д.

Водород имеет три изотопа:

– обычный водород, или протий (Z=1, N=0),

– тяжелый водород, или дейтерий (Z=1, N=1),

– тритий (Z=1, N=2).

Протий и дейтерий стабильны, тритий радиоактивен.

Ядра с одинаковым массовым числом А называются изобарами . В качестве примера можно привести

и

. Ядра с одинако-­ вым числом нейтроновN = A – Z носят названиеизотонов (

,

).Наконец, существуют радиоактивные ядра с одинаковымиZ и A, отличающиеся периодом полураспада. Они называютсяизомерами . Напри-­ мер, имеются два изомера ядра

, у одного из них период полу­-распада равен 18 мин, у другого – 4,4 часа.

Известно около 1500 ядер, различающихся либо Z, либо А, либо и тем и другим. Примерно 1/5 часть этих ядер устойчивы, осталь­ные радиоактивны. Многие ядра были получены искусственным путем с помощью ядерных реакций.

В природе встречаются элементы с атомным номером Z от1до 92, исключая технеций (Tc, Z = 43) и прометий (Pm, Z = 61). Плутоний (Pu, Z = 94) после получения его искусственным путем был обнаружен в ничтожных количествах в природном минерале – смоляной обманке. Остальные трансурановые (т.е. заурановые) элементы (сZ от 93 до 107) были получены искусственным путем посредством различ­ных ядерных реакций.

Трансурановые элементы кюрий (96 Cm), эйнштейний (99 Es),фермий (100 Fm) и менделевий (101 Md) получили название в честь выдающихся ученыхII. и М. Кюри, А. Эйнштейна, З. Ферми и Д.И. Менделеева. Лоуренсий (103 Lw) назван в честь изобретателя циклотрона Э. Лоуренса. Курчатовий (104 Ku) получил свое название в честь выдающегося физика И.В. Курчатова.

Некоторые трансурановые элементы, в том числе курчатовий и элементы с номерами 106 и 107, были получены в Лаборатории ядерных реак­ций Объединенного института ядерных исследований в Дубне ученым

Н.Н. Флеровым и его сотрудниками.

Размеры ядер . В первом приближении ядро можно считать шаром, радиус которого довольно точно определяется формулой

(ферми – название применяемой в ядерной физике единицы длины, рав­ной

10 -13 см). Из формулы следует, что объем ядра пропорцио­нален числу нуклонов в ядре. Таким образом, плотность вещества во всех ядрах примерно одинакова.

Спин ядра . Спины нуклонов складываются в результирующий спин ядра. Спин нуклона равен 1/2. Поэтому квантовое число спина ядра будет полуцелым при нечетном числе нуклонов А и целым или нулем при четном А. Спины ядерJне превышают нескольких единиц. Это указывает на то, что спины большинства нуклонов в ядре взаимно компенсируют друг друга, располагаясь антипараллельно. У всех четно-четных ядер (т.е. ядро с четным числом протонов и четным чис­лом нейтронов) спин равен нулю.

Механический момент ядра M J складывается с моментом электрон­ной оболочки

в полный момент импульса атомаM F , который определяется квантовым числом F.

Взаимодействие магнитных моментов электронов и ядра приводит к тому, что состояния атома, соответствующие различным взаимным ориентациям M J и

(т.е. различнымF), имеют немного отли­чающуюся энергию. Взаимодействием моментов μ L иμ S обусловлива­ется тонкая структура спектров. Взаимодействиемμ J и определяется сверхтонкая структура атомных спектров. Расщеп­ление спектральных линий, соответствующее сверхтонкой структуре, настолько мало (порядка нескольких сотых ангстрема), что может на­блюдаться лишь с помощью приборов самой высокой разрешающей силы.

Особенностью радиоактивного загрязнения в отличие от загрязнения другими поллютантами является то, что вредное воздействие на человека и объекты окружающей среды оказывает не сам радионуклид (поллютант), а излучение, источником которого он является.

Однако бывают случаи, когда радионуклид - токсичный элемент. Например, после аварии на Чернобыльской АЭС в окружающую среду с частицами ядерного топлива были выброшены плутоний 239, 242 Рu. Кроме того, что плутоний - альфа-излучатель и при попадании внутрь организма представляет значительную опасность, плутоний сам по себе - токсичный элемент.

По этой причине используют две группы количественных показателей: 1) для оценки содержания радионуклидов и 2) для оценки воздействия излучения на объект.
Активность - количественная мера содержания радионуклидов в анализируемом объекте. Активность определяется числом радиоактивных распадов атомов в единицу времени. Единицей измерения активности в системе СИ является Беккерель (Бк) равный одному распаду в секунду (1Бк = 1 расп/с). Иногда используется внесистемная единица измерения активности - Кюри (Ки); 1Ки = 3,7 ×1010 Бк.

Доза излучения - количественная мера воздействия излучения на объект.
В связи с тем, что воздействие излучения на объект можно оценивать на разных уровнях: физическом, химическом, биологическом; на уровне отдельных молекул, клеток, тканей или организмов и т. д., используют несколько видов доз: поглощенную, эффективную эквивалентную, экспозиционную.

Для оценки изменения дозы излучения во времени используют показатель «мощность дозы». Мощность дозы - это отношение дозы ко времени. Например, мощность дозы внешнего облучения от естественных источников радиации составляет на территории России 4-20 мкР/ч.

Основной норматив для человека - основной дозовый предел (1 мЗв/год) - вводится в единицах, эффективной эквивалентной дозы. Существуют нормативы и в единицах активности, уровни загрязнения земель, ВДУ, ПГП, СанПиН и др.

Строение атомного ядра.

Атом - это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10 -13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Атомные ядра состоят из нуклонов - ядерных протонов (Z - число протонов) и ядерных нейтронов (N - число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.


Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N .

Протон - элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон - другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10 -13 см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

Для атомов отличающихся составом ядра, употребляется название «нуклиды», а для радиоактивных атомов - «радионуклиды».

Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида А Х).

Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96 Sr, 96 Y, 96 Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.

Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234 U, 235 U, 236 U, 238 U.

Изотопы - нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36 S, 37 Cl, 38 Ar, 39 K, 40 Ca принадлежат к ряду изотопов с 20 нейтронами.

Изотопы принято обозначать в виде Z Х М, где X - символ химического элемента; М - массовое число, равное сумме числа протонов и нейтронов в ядре; Z - атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3 Н, 14 С, 137 Сs, 90 Sr и т. д.

Атомы ядра, которые имеют одинаковые массовые числа, но разные заряды и, следственно, различные свойства называют «изобарами», так например один из изотопов фосфора имеет массовое число 32 - 15 Р 32 , такое же массовое число имеет и один из изотопов серы - 16 S 32 .

Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.

В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.

В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами ).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения α -частиц через вещество. Оказалось, что почти вся масса атома (99,95%) сосредоточена в ядре. Размер атомного ядра имеет порядок величины 10 -1 3 -10 - 12 см, что в 10 000 раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода , выбитых α -частицами из ядер других элементов (1919-1920 гг.), привели уче-ного к представлению о протоне . Термин протон был введен в начале 20-х гг XX ст.

Протон (от греч. protons — первый, символ p ) — стабильная элементарная частица, ядро ато-ма водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона e = 1,6 · 10 -1 9 Кл. Масса протона в 1836 раз больше массы электрона. Масса покоя протона m р = 1,6726231 · 10 -27 кг = 1,007276470 а.е.м.

Второй частицей, входящей в состав ядра, является нейтрон .

Нейтрон (от лат. neuter — ни тот, ви другой, символ n ) — это эле-ментарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в 1839 раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона m n = 1,6749286 · 10 -27 кг = 1,0008664902 а.е.м. и превосходит массу протона па 2,5 массы электрона. Нейтрон, наря-ду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия α -частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало пре-граду из свинцовой пластины толщиной 10-20 см) усиливало свое действие при прохождении через парафиновую пластину (см. рисунок). Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это γ -кванты. Большая проникающая способность новых частиц, названных ней-тронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании α -частиц в ядра бериллия происходит следующая реакция:

Здесь — символ нейтрона; заряд его равен нулю, а относительная атомная масса прибли-зительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время ~ 15 мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протонно-нейтронную (нуклонную) модель ядра . Согласно этой моде-ли, ядро состоит из протонов и нейтронов. Число протонов Z совпадает с порядковым номером элемента в таблице Д. И. Менделеева .

Заряд ядра Q определяется числом протонов Z , входящих в состав ядра, и кратен абсолютной величине заряда электрона e :

Q = +Ze.

Число Z называется зарядовым числом ядра или атомным номером .

Массовым числом ядра А называется общее число нуклонов, т. е. протонов и нейтронов, содер-жащихся в нем. Число нейтронов в ядре обозначается буквой N . Таким образом, массовое число равно:

А = Z + N.

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов .

Изотопы (от греч. isos — равный, одинаковый и topoa — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число прото-нов (Z ) и различное число нейтронов (N ).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного эле-мента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами Z и N . Общее обозначение нуклидов имеет вид ……. где X — символ химического эле-мента, A = Z + N — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и про-изошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (b почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемен-та определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1 Н протий , 2 Н дейтерий , 3 Н тритий столь сильно отличаются по массе, что и их физические и хими-ческие свойства различны. Дейтерий стабилен (т.е. не радиоактивен) и входит в качестве неболь-шой примеси (1: 4500) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода . Она при нормальном атмосферном давлении кипит при 101,2 °С и замерзает при +3,8 ºС. Тритий β -радиоактивен с периодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактив-ные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами 235 и 238. Изотоп составляет всего 1/140 часть от более распространенного .

Задолго до появления достоверных данных о внутреннем устройстве всего сущего греческие мыслители представляли себе материю в виде мельчайших огненных частиц, которые находились в постоянном движении. Вероятно, это видение мирового устройства вещей было выведено из чисто логических умозаключений. Несмотря на некоторую наивность и абсолютную бездоказательность этого утверждения, оно оказалось верным. Хотя подтвердить смелую догадку ученые смогли лишь двадцать три века спустя.

Строение атомов

В конце XIX века были исследованы свойства разрядной трубки, через которую пропущен ток. Наблюдения показали, что при этом испускается два потока частиц:

Отрицательные частицы катодных лучей были названы электронами. В дальнейшем частицы с тем же отношением заряда к массе были обнаружены во многих процессах. Электроны казались универсальными составляющими различных атомов, довольно легко отделяющимися при бомбардировке ионов и атомов.

Частички, несущие положительный заряд, представлялись осколками атомов после потери ими одного или нескольких электронов. На самом деле положительные лучи представляли собой группы атомов, лишенных отрицательных частиц, и вследствие этого имеющих положительный заряд.

Модель Томпсона

На основании опытов было выяснено, что положительные и отрицательные частички представляли суть атома, были его составляющими. Английский ученый Дж. Томсон предложил свою теорию. По его мнению, строение атома и атомного ядра представляли собой некую массу, в которой отрицательные заряды были втиснуты в положительно заряженный шар, как изюм в кекс. Компенсация зарядов делала «кекс» электрически нейтральным.

Модель Резерфорда

Молодой американский ученый Резерфорд, анализируя треки, оставшиеся после альфа-частиц, пришел к выводу, что модель Томпсона несовершенна. Некоторые альфа-частицы отклонялись на небольшие углы - в 5-10 o . В редких случаях альфа-частицы отклонялись на большие углы в 60-80 o , а в исключительных случаях углы были очень большими - 120-150 o . Модель атома Томпсона не могла объяснить такую разницу.

Резерфорд предлагает новую модель, объясняющую строение атома и атомного ядра. Физика процессов утверждает, что атом должен быть пуст на 99%, с крошечным ядром и вращающимися вокруг него электронами, которые движутся по орбитам.

Отклонения при ударах он объясняет тем, что частицы атома имеют собственные электрические заряды. Под воздействием бомбардирующих заряженных частиц атомные элементы ведут себя как обыкновенные заряженные тела в макромире: частицы с одинаковыми зарядами отталкиваются друг от друга, а с противоположными - притягиваются.

Состояние атомов

В начале прошлого века, когда были запущены первые ускорители элементарных частиц, все теории, объяснявшие строение атомного ядра и самого атома, ждали экспериментальной проверки. К тому времени были уже досконально изучены взаимодействия альфа- и бета-лучей с атомами. Вплоть до 1917 года считалось, что атомы либо стабильны, либо радиоактивны. Стабильные атомы нельзя расщепить, распад радиоактивных ядер невозможно контролировать. Но Резерфорду удалось опровергнуть это мнение.

Первый протон

В 1911 году Э. Резерфорд выдвинул идею о том, что все ядра состоят из одинаковых элементов, основой для которых является атом водорода. На эту идею ученого натолкнул важный вывод предыдущих изучений строения вещества: массы всех химических элементов делятся без остатка на массу водорода. Новое предположение открывало невиданные возможности, позволяющие по-новому видеть строение атомного ядра. Ядерные реакции должны были подтвердить или опровергнуть новую гипотезу.

Опыты проводились в 1919 году с атомами азота. Бомбардируя их альфа-частицами, Резерфорд добился удивительного результата.

Атом N поглотил альфа-частицу, превратился после этого в атом кислорода О 17 и испустил ядро водорода. Это стало первым искусственным превращением атома одного элемента в другой. Подобный опыт вселял надежду на то, что строение атомного ядра, физика существующих процессов позволяют осуществлять и другие ядерные превращения.

Ученый использовал в своих опытах метод сцинтилляции - вспышки. По частоте вспышек он делал выводы о том, каким является состав и строение атомного ядра, о характеристиках рожденных частиц, об их атомной массе и порядковом номере. Неизвестная частица было названа Резерфордом протоном. Она имела все характеристики атома водорода, лишенного своего единственного электрона - одиночный положительный заряд и соответствующую массу. Таким образом было доказано, что протон и ядро водорода являются одними и теми же частицами.

В 1930 году, когда были построены и запущены первые большие ускорители, модель атома Резерфорда удалось проверить и доказать: каждый атом водорода состоит из одинокого электрона, положение которого невозможно определить, и рыхлого атома с одиноким положительным протоном внутри. Поскольку при бомбардировке из атома могут влетать протоны, электроны и альфа-частицы, ученые думали, что они и есть составляющие любого ядра атома. Но подобная модель атома ядра казалась неустойчивой - электроны были слишком велики для того, чтобы умещаться в ядре, кроме этого, существовали серьезные затруднения, связанные с нарушением закона количества движения и сохранения энергии. Эти два закона, как строгие бухгалтеры, говорили о том, что количество движения и масса при бомбардировке исчезают в неизвестном направлении. Поскольку эти законы являлись общепринятыми, следовало отыскать объяснения для подобной утечки.

Нейтроны

Ученые всего мира ставили эксперименты, направленные на открытие новых составляющих ядер атомов. В 1930-х годах немецкие физики Беккер и Боте бомбардировали атомы бериллия альфа-частицами. При этом было зарегистрировано неизвестное излучение, которое было решено назвать G-лучами. Подробные исследования рассказали о некоторых особенностях новых лучей: они могла распространяться строго по прямой, не взаимодействовали с электрическими и магнитными полями, обладали высокой проникающей способностью. Позднее частицы, образующие этот вид излучения, были найдены при взаимодействии альфа-частиц с другими элементами - бором, хромом и прочими.

Гипотеза Чедвика

Тогда Джеймс Чедвик, коллега и ученик Резерфорда, в журнале «Нэйчур» дал короткое сообщение, которое позднее стало общеизвестным. Чедвик обратил внимание на тот факт, что противоречия в законах сохранения легко разрешаемы, если допустить, что новое излучение является потоком нейтральных частиц, каждая из которых имеет массу, приблизительно равную массе протона. Рассматривая это предположение, физики существенно дополнили гипотезу, объясняющую строение атомного ядра. Кратко суть дополнений сводилась к новой частице и ее роли в строении атома.

Свойства нейтрона

Обнаруженной частице было дано имя «нейтрон». Новооткрытые частички не образовывали вокруг себя электромагнитных полей, легко проходили через вещество, не теряя при этом энергии. При редких столкновениях с легкими ядрами атомов нейтрон в состоянии выбить из атома ядро, теряя при этом значительную часть своей энергии. Строение атомного ядра предполагало наличие различного количества нейтронов в каждом веществе. Атомы с одинаковым зарядом ядра, но с различным количеством нейтронов получили название изотопов.

Нейтроны послужили отличной заменой альфа-частицам. В настоящее время именно их используют для того, чтобы изучить строение атомного ядра. Кратко их значение для науки описать невозможно, но именно благодаря бомбардировке нейтронами атомных ядер физики смогли получить изотопы практически всех известных элементов.

Состав ядра атома

В настоящее время строение атомного ядра представляет собой совокупность протонов и нейтронов, скрепленных между собой ядерными силами. Например, ядро гелия представляет собой комочек из двух нейтронов и двух протонов. Легкие элементы имеют практически равное число протонов и нейтронов, у тяжелых элементов количество нейтронов значительно больше.

Такая картина строения ядра подтверждается экспериментами на современных больших ускорителях с быстрыми протонами. Электрические силы отталкивания протонов уравновешиваются ядреными силами, которые действуют только в самом ядре. Хотя природа ядерных сил еще до конца не изучена, их существование является практически доказанным и полностью объясняет строение атомного ядра.

Связь массы и энергии

В 1932 камера Вильсона запечатлела удивительный фотоснимок, доказывающий существование положительных заряженных частиц, с массой электрона.

До этого положительные электроны были предсказаны теоретически П. Дираком. Реальный положительный электрон был обнаружен также в космическом излучении. Новую частичку назвали позитроном. При столкновении со своим двойником - электроном, происходит аннигиляция - взаимное уничтожение двух частиц. При этом освобождается определенное количество энергии.

Таким образом, теория, разработанная для макромира, полностью подходила для описания поведения мельчайших элементов вещества.

Протонно-электронная теория

К началу $1932$ г. Было известно только три элементарные частицы: электрон, протон и нейтрон. По этой причине было сделано предположение, что ядро атома состоит с протонов и электронов (протонно-электронная гипотеза). Считалось, что в состав ядра с номером $Z$ в периодической системе элементов Д. И. Менделеева и массовым числом $A$ входит $A$ протонов и $Z-A$ нейтронов. В соответствии с этой гипотезой электроны, которые входили в состав ядра, выполняли роль «цементирующего» средства, с помощью которого положительно заряженные протоны удерживались в ядре. Сторонники протонно-электронной гипотезы состава атомного ядра считали, что $\beta ^-$ - радиоактивность -- это подтверждение правильности гипотезы. Но эта гипотеза оказалась на в состоянии объяснить результаты эксперимента и была отброшена. Одним с таких затруднений была невозможность объяснить то, что спин ядра азота $^{14}_7N$ равен единице $(\hbar)$. В соответствии с протонно-электронной гипотезой, ядро азота $^{14}_7N$ должно состоять с $14$ протонов и $7$ электронов. Спин протонов и электронов равен $1/2$. По этой причине ядро атома азота, которое состоит в соответствии с этой гипотезой с $21$ частицы, должно иметь спин $1/2,\ 3/2,\ 5/2,\dots 21/2$. Это несоответствие протонно-электронной теории названо «азотной катастрофой». Так же непонятным было то, что при наличии электронов в ядре его магнитный момент имеет малый магнитный момент по сравнению с магнитным моментом электрона.

В $1932$ году Дж. Чедвик открыл нейтрон. После этого открытия Д. Д. Иваненко и Е. Г. Гапон выдвинули гипотезу о протонно-нейтронном строении атомного ядра, какую подробно разработал В. Гейзенберг.

Замечание 1

Протонно-нейтронный состав ядра подтвержден не только теоретическими выводами, но и непосредственно опытами по расщеплению ядра на протоны и нейтроны. Сейчас общепринято, что атомное ядро состоит с протонов и нейтронов, которые так же называются нуклонами (от латинского nucleus -- ядро, зерно).

Строение атомного ядра

Ядро являет собой центральную часть атома, в которой сосредоточено положительный электрический заряд и основная часть массы атома. Размеры ядра, в сравнении с орбитами электронов чрезвычайно малы: $10^{-15}-10^{-14}\ м$. ядра состоят с протонов и нейтронов, которые почти одинаковы по массе, но электрический заряд несет только протон. Полное число протонов называется атомным номером $Z$ атома, который совпадает с числом электронов у нейтральном атоме. Нуклоны удерживаются в ядре большими силами, по своей природе эти силы не относятся ни к электрическим ни к гравитационным, а по величине они на много превышают силы, которые связывают электроны с ядром.

Согласно протонно-нейтронной модели строения ядра:

  • ядра всех химических элементов состоят из нуклонов;
  • заряд ядра обусловлен только протонами;
  • число протонов в ядре равно порядковому номеру элемента;
  • число нейтронов равно разности между массовым числом и числом протонов ($N=A-Z$)

Протон ($^2_1H\ или\ p$) -- положительно заряженная частица: её заряд равен заряду электрона $e=1.6\cdot 10^{-19}\ Кл$, а масса покоя $m_p=1.627\cdot 10^{-27}\ кг$. Протон является ядром налёгшего нуклона атома гидрогена.

Для упрощения записей и расчётов массу ядра зачастую определяют в атомных единицах массы (а.е.м) или в единицах энергии (записывая вместо массы соответствующую энергию $E=mc^2$ в электрон-вольтах). За атомною единицу массы берут $1/12$ массы нуклида углерода $^{12}_6С$. В этих единицах получаем:

Протон подобно электрону имеет собственный момент импульса -- спин, который равен $1/2$ (в единицах $\hbar $). Последний, во внешнем магнитном поле может ориентироваться только так, что его проекция и направления поля равны $+1/2$ или $-1/2$. Протон, как и электрон, подлежит квантовой статистике Ферми-Дирака, т.е. принадлежит к фермионам.

Протон характеризируется собственным магнитным моментом, который для частицы со спином $1/2$ зарядом $e$ и массой $m$ равен

Для электрона собственный магнитный момент равен

Для описания магнетизма нуклонов и ядер используют ядерный магнетон (в $1836$ раз меньше магнетона Бора):

Поначалу считали, что магнитный момент протона равен ядерному магнетону, т.к. его масса в $1836$ раз больше массы электрона. Но измерения показали, что на самом деле собственный магнитный момент протона в $2,79$ раз больше от ядерного магнетрона, имеет положительный знак, т.е. направление совпадает со спином.

Современная физика объясняет эти разногласия тем, что протоны и нейтроны взаимопреобразуются и на протяжении некоторого времени пребывают в состоянии диссоциации на $\pi ^\pm $ -- мезон и соответственного знака другой нуклон:

Масса покоя $\pi ^\pm $ - мезона равна $193,63$ МэВ, по этому его собственный магнитный момент в $6,6$ раз больше от ядерного магнетона. В измерениях появляется некоторое эффективное значение магнитного момента протона и $\pi ^+$ -- мезонного окружения.

Нейтрон ($n$) -- электрически нейтральная частица; ее масса покоя

Хоть нейтрон и лишен заряда, он имеет магнитный момент $\mu _n=-1.91\mu _Я$. Знак «$-$» показывает, что за направлением магнитный момент противоположный спину протона. Магнетизм нейтрона определяется эффективным значением магнитного момента частиц, на которые он способен диссоцыировать.

В свободном состоянии нейтрон неустойчивая частица и произвольно распадается (период полураспада $12$ мин): излучая $\beta $ -- частицу и антинейтрино он превращается в протон. Схема распада нейтрона записывается в таком виде:

В отличии от внутриядерного распада нейтрона $\beta $ -- распад принадлежит и до внутреннего распада и до физики элементарных частиц.

Взаимное преобразование нейтрона и протона, равенство спинов, приближённость масс и свойств дают основания предполагать, что речь идет о двух разновидностях одной и той же ядерной частицы -- нуклона. Протонно-нейтронная теория хорошо согласуется с экспериментальными данными.

Как составляющие ядра протоны и нейтроны обнаруживают в многочисленных реакциях деления и синтеза.

В произвольных и штучных делениях ядер наблюдаются так же потоки электронов, позитронов, мезонов, нейтрино и антинейтрино. Масса $\beta $ -- частицы (электрон или позитрон) в $1836$ раз меньше массы нуклона. Мезоны -- положительные, отрицательные и нулевые частицы -- по массе занимают промежуточное место между $\beta $ -- частицами и нуклонами; время жизни таких частиц очень мало и составляет миллионные доли секунды. Нейтрино и антинейтрино -- элементарные частицы, масса покоя которых равна нулю. Однако электроны, позитроны и мезоны не могут быть составляющими ядра. Эти легкие частицы не могут быть локализованы в малом объеме, которым является ядро радиусом $\sim 10^{-15}\ м$.

Для доказательства этого определим энергию электрического взаимодействия (например, электрона с позитроном или протоном в ядре)

и сравним ее с собственной энергией электрона

Посколькy энергия внешнего взаимодействия превышает собственную энергию электрона, он не может существовать и сохранять собственную индивидуальность, в условиях ядра он будет уничтожен. Другая ситуация с нуклонами, их собственная энергия более $900$ МэВ, поэтому в ядре они могут сохранять свои особенности.

Легкие частицы излучаются с ядер в процессе перехода их с одного состояния в другое.