Согласно современным физическим представлениям волны де бройля. Гипотеза де-Бройля. Волновые свойства вещества. Ионизации и возбуждения

Недостатки теории Бора указывали на необходимость пересмотра основ квантовой теории и представлений о природе микрочастиц (электронов, протонов и т.п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризующейся определенными координатами и определенной скоростью.

Мы уже знаем, что в оптических явлениях наблюдается своеобразный дуализм. Наряду с явлениями дифракции, интерференции (волновыми явлениями) наблюдаются и явления, характеризующие корпускулярную природу света (фотоэффект, эффект Комптона).

В 1924 г. Луи де Бройль выдвинул гипотезу, что дуализм не является особенностью только оптических явлений , а имеет универсальный характер. Частицы вещества также обладают волновыми свойствами .

«В оптике, – писал Луи де Бройль, – в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка?» Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы в случае света.

Если фотон обладает энергией и импульсом , то и частица (например электрон), движущаяся с некоторой скоростью, обладает волновыми свойствами, т.е. движение частицы можно рассматривать как движение волны.

Согласно квантовой механике, свободное движение частицы с массой m и импульсом (где υ – скорость частицы) можно представить как плоскую монохроматическую волну (волну де Бройля ) с длиной волны

(3.1.1)

распространяющуюся в том же направлении (например в направлении оси х ), в котором движется частица (рис. 3.1).

Зависимость волновой функции от координаты х даётся формулой

, (3.1.2)

где – волновое число волновой вектор направлен в сторону распространения волны или вдоль движения частицы:

. (3.1.3)

Таким образом, волновой вектор монохроматической волны , связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны .

Поскольку кинетическая энергия сравнительно медленно движущейся частицы , то длину волны можно выразить и через энергию:

. (3.1.4)

При взаимодействии частицы с некоторым объектом – с кристаллом, молекулой и т.п. – её энергия меняется: к ней добавляется потенциальная энергия этого взаимодействия, что приводит к изменению движения частицы. Соответственно, меняется характер распространения связанной с частицей волны, причём это происходит согласно принципам, общим для всех волновых явлений. Поэтому основные геометрические закономерности дифракции частиц ничем не отличаются от закономерностей дифракции любых волн. Общим условием дифракции волн любой природы является соизмеримость длины падающей волны λ с расстоянием d между рассеивающими центрами : .

Гипотеза Луи де Бройля была революционной, даже для того революционного в науке времени. Однако, она вскоре была подтверждена многими экспериментами.

Недостаточность теории Бора указывала на необходимость пересмотра основ квантовой теории и представлений о природе микрочастиц (электронов, протонов и т. п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризуемой определенными координатами и определенной скоростью.

В результате углубления представлений о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм. Наряду с такими свойствами света, которые самым непосредственным образом свидетельствуют о его волновой природе (интерференция, дифракция), имеются и другие свойства, столь же непосредственно обнаруживающие его корпускулярную природу (фотоэффект, явление Комптона).

В 1924 г. Луи де-Бройль выдвинул смелую гипотезу, что дуализм не является особенностью одних только оптических явлений, но имеет универсальное значение. «В оптике, - писал он, - в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка?». Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де-Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы в случае света. Фотон обладает энергией

и импульсом

По идее де-Бройля, движение электрона или какой-либо другой частицы связано с волновым процессом, длина волны которого равна

а частота

Гипотеза де-Бройля вскоре была подтверждена эксперимент тально. Дэвиссон и Джермер исследовали в 1927 г. отражение электронов от монокристалла никеля, принадлежащего к кубической системе.

Узкий пучок моноэнергетических электронов направлялся на поверхность монокристалла, сошлифованную перпендикулярно к большой диагонали кристаллической ячейки (параллельные этой поверхности кристаллические плоскости обозначаются в кристаллографии индексами (111); ем. § 45). Отраженные электроны улавливались цилиндрическим электродом, присоединенным к гальванометру (рис. 18.1). Интенсивность отраженного пучка оценивалась по силе тока, текущего через гальванометр. Варьировались скорость электронов и угол . На рис. 18.2 показана зависимость силы тока, измеряемой гальванометром, от угла при различных энергиях электронов.

Вертикальная ось на графиках определяет направление падающего пучка. Сила тока в заданном направлении представляется длиной отрезка, проведенного от начала координат до пересечения с кривой. Из рисунка видно, что рассеяние оказалось особенно интенсивным при определенном значении угла Этот угол соответствовал отражению от атомных плоскостей, расстояние между которыми d было известно из рентгенографических исследований. При данном сила тока оказалась особенно значительной при ускоряющем напряжении, равном 54 В. Вычисленная по формуле (18,1) длина волны, отвечающая этому напряжению, равна 1,67 А.

Брэгговская длина волны, отвечающая условию

равнялась 1,65 А. Совпадение настолько разительно, что опыты Дэвиссона и Джермера следует признать блестящим подтверждением идеи де-Бройля.

Г. П. Томсон (1927) и независимо от него П. С. Тартаковский получили дифракционную картину при прохождении электронного пучка через металлическую фольгу. Опыт осуществлялся следующим образом (рис. 18.3). Пучок электронов, ускоренных разностью потенциалов порядка нескольких десятков киловольт, проходил через тонкую металлическую фольгу и попадал на фотопластинку. Электрон при ударе о фотопластинку оказывает на нее такое же действие, как и фотон. Полученная таким способом электронограмма золота (рис. 18.4, а) сопоставлена с полученной в аналогичных условиях рентгенограммой алюминия (рис. 18.4, б).

Сходство обеих картин поразительно, Штерн и его сотрудники показали, что дифракционные явления обнаруживаются также у атомных и молекулярных пучков. Во всех перечисленных случаях дифракционная картина. соответствует длине волны, определяемой соотношением (18.1).

В опытах Дэвиссона и Джермера, а также в опытах Томсона интенсивность электронных пучков была столь велика, что через кристалл проходило одновременно большое число электронов. Поэтому можно было предположить, что наблюдаемая дифракционная картина обусловлена одновременным участием в процессе большого числа электронов, а отдельный электрон, проходя через кристалл, дифракции не обнаруживает. Чтобы выяснить этот вопрос, советские физики Л. М. Биберман, Н. Г. Сушкин и В. А. Фабрикант осуществили в 1949 г. опыт, в котором интенсивность электронного пучка была настолько слабой, что электроны проходили через прибор заведомо поодиночке. Промежуток времени между двумя последовательными прохождениями электронов через кристалл примерно в 30 000 раз превосходил время, затрачиваемое электроном на прохождение всего прибора. При достаточной экспозиции была получена дифракционная картина, ничем не отличающаяся от той, какая наблюдается при обычной интенсивности пучка. Таким образом, было доказано, что волновые свойства присущи отдельному электрону.

Гипотеза де Бройля. Дифракция микрочастиц. Принцип неопределённости Гейзенберга. Задание состояния микрочастицы. Волновая функция, ее статистический смысл и условия, которым она должна удовлетворять. Принцип суперпозиции квантовых состояний. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний.

Гипотеза де Бройля

В 1924 году французский физик Луи де Бройль высказал гипотезу о том, что все материальные объекты в природе обладают как корпускулярными, так и волновыми свойствами. По гипотезе де Бройля корпускулярно-волновой дуализм является всеобщим свойством материи, и поэтому любая частица (электрон, протон, нейтрон и др.) обладает волновыми свойствами. При этом наличие у частицы волновых свойств принципиально изменяет характер её движения и способ описания такого движения.

По гипотезе де Бройля волновые свойства свободной частицы, движущейся по инерции в отсутствие внешних силовых полей, описывает плоская волна де Бройля , частота и длина волны которой связаны с корпускулярными характеристиками частицы – энергией и импульсом . Эта связь имеет вид:

.

Направление распространения волны де Бройля совпадает с направлением движения частицы, и можно показать, что групповая скорость волны и скорость частицы одинаковы.

В теории волновых процессов уравнение плоской монохроматической волны, распространяющейся в направлении оси , имеет вид:

Его часто записывают в комплексной форме:

учитывая, что гармоническая функция является действительной частью комплексной функции , где - мнимая единица.

Уравнение плоской волны определяет амплитуду волны , её круговую частоту и волновое число . Начальная фаза волны в выражениях для выбрана равной нулю. Так как для плоской волны де Бройля , то уравнение плоской волны де Бройля можно записать в виде:

.

Плоская волна де Бройля описывает волновые свойства свободной частицы, имеющей энергию и импульс . Сравнивая квадраты амплитуд волн де Бройля в различных областях пространства, можно оценить вероятности нахождения частицы в этих областях. Вероятность обнаружения частицы в данной области пространства тем больше, чем больше квадрат амплитуды волны де Бройля, т.е. её интенсивность.

Волны де Бройля, которые часто называют волнами материи, как и волны любой природы, могут отражаться, преломляться, интерферировать друг с другом, испытывать дифракцию при взаимодействии с неоднородностями. Тогда можно говорить, например, о дифракции частиц и наблюдать дифракционные эффекты в различных экспериментах с неоднородными средами. Один из первых опытов по дифракции электронов на кристалле был выполнен в 1927 году американскими учёными Клинтоном Дэвиссоном и Лестером Джермером.

Опыт Дэвиссона-Джермера .

В опыте Дэвиссона-Джермера ускоренные в электронной пушке электроны попадали на кристалл никеля под некоторым углом скольжения . Регулировкой величины ускоряющей разности потенциалов в электронной пушке изменялись кинетическая энергия и импульс вылетающих электронов и, следовательно, их длина волны де Бройля. По току детектора в опыте измерялось число отражённых от кристалла электронов. Структура кристалла никеля была хорошо известна из данных рентгеноструктурного анализа

Было обнаружено резкое увеличение числа отражённых от кристалла электронов в тех случаях, когда для электронных волн де Бройля выполнялось условие Вульфа-Брэггов, (это условие было получено в опытах по дифракции рентгеновских лучей на кристалле никеля).

Де Бройль выдвинул гипотезу: волновыми св-вами обладает любой материальный объект. Он использовал за-ны природы света. Носителями э/м поля являются фотоны.

(1) и (2) отражают двойственность природы света и любого э/м излучения.

Де Бройль предложил, что двойственность характерна для любого материального объекта. Из гипотезы де Бройля следует, что волновой механизм является свойством любой материи.

Длина волны де Бройля определяется формулой: ;

Волновые процессы, сопровождают любой объект, движущийся со скоростью V. Это не реальные, а мнимые процессы. Природного аналога эти процессы не имеют.

Эксперим. Док-ва гипотезы де Бройля. Опыты Дэвиссона и Джермера.

Электрон имеет , за счёт волновых свойств он должен давать диффракционную картину через кристалл.

ЭП-электронная пушка; Г-гальванометр;

D 1 , D 2 - диафранмы; ЦФ - цилиндр Фарадея; Ni - монокристалл;  - угол.

При  = const = 50°

Полученный результат можно было объяснить только диффракционным максимумом.

Опыты показали, что пучку эл-нов, ускоренному эл. полем присущи волновые св-ва, т.к. пучок эл-нов на монокристалле Ni даёт дифракцию.

Задание1 1 .

Суперпозиция плоских волн. Волновой пакет. Фазовая и групповая скорости. Волны де Бройля и их свойства. Волновой пакет и частица.

Суперпозиция плоских волн:

Волновой процесс, сопровождающий движение микрочастицы пытались объяснить следующими теориями:

а) С помощью монохромотичной волны. Это невозможно т.к. эта волна бесконечна в пространстве, а микрочастица занимает ограниченную область пространства, определенную ее размерами (след на экране осциллографа)

б) Суперпозиция монохроматических волн, омега и лямбда которых лежат в определенном диапазоне так, что складываясь эти волны дают амплитуду отличную от нуля. в ограниченной области пространства. Такая суперпозиция- волновой пакет.

S(x,t) – сложный волновой процесс.

волновой пакет:

S(x, t) = 2*A*delta k * sin(гамма)/гамма * cos(omega нулевое*t – k нулевое*х)

2*A*delta k * sin(гамма)/гамма – модулированная амплитуда волнового пакета

при гамма -> 0 sin(гамма)/гамма -> 1

при гамма -> +-пи*n sin(гамма)/гамма -> 0

при гамма > пи*n ; гамма < -пи*n sin(гамма)/гамма << 1

Пакет – суперпозиция монохромотических волн, зн-я волнового числа которого лежит в интервале от к(нулевое)-дельта к до к(нулевое)+дельта к

Волны де Бройля и их свойства:

Волны де Бройля описывают волновые свойства микрочастиц. Монохроматическая волна де Бройля имеет вид:

Движение микрочастицы характеризуется величинами Е и р

Е = h*ню = h(с чертой)*omega; omega = E/h(с чертой)

р = h(с чертой)*к; к = р/h(с чертой)

Одномерное движение вдоль оси х:

ПСИ(x,t) = A*exp(-i/h(с чертой) * (Е*t – р*х)

ПСИ(x,t) = A(x,t)*exp(-i/h(с чертой) * (Е*t – р*х)

В общем случае трехмерное пространство:

ПСИ(r ,t) = A*exp(-i/h(с чертой) * (Е*t – р, r )

ПСИ(r ,t) = A(r ,t)*exp(-i/h(с чертой) * (Е*t – р, r )

Свойства:

    Фазовая скорость волн де Бройля больше скорости света

Vф = omega/k = (h(с чертой)*омега)/(h(с чертой)*k) = E/p = (m*c^2)/(m*V) = c^2/V>c

Из этого свойства следует, что Vф не равна скорости передачи энергии, т к энергия не может передаваться со скоростью большей чем скорость света

Фазовая скорость является физической абстракцией.

    Волны де Бройля обладают дисперсией в вакууме (в отличие от э-м волн)

Vф = f(V) = f(mV) = f(p) = {лямбда = h/p} = f(лямбда)

Vф = f(лямбда) – дисперсия

    Групповая скорость волны де Бройля равна скорости движения микрочастиц

U = (d*omega)/(d*k) = d(h(с чертой)*omega)/d(h(с чертой)*k) = dE/dp = d/dp * (p^2/(2*m)) = (2*p)/(2*m) = p/m = p/m = V

    В атоме водорода по Бору на каждой стационарной орбите укладывается целое число волн де Бройля:

mVr = nh(с чертой)

лямбда = h/p; p = h/лямбда = (2*пи*h(с чертой))/лямбда

2*пи*r = n*лямбда

Волновой пакет и частица:

Частицу нельзя описать ни монохроматической волной (т к волна бесконечна), ни пакетом волн де Бройля (т к время «жизни» волнового пакета delta t = m(электрона)/h * (delta x)^2 , потом он расползается (delta x = (2*пи)/delta k))

Волновые свойства можно описать только пользуясь теорией вероятности и статистикой.

1.Фазовая скорость Vф – скорость перемещ. знач. коорд-т с постоян. фазой

ωоdt – kodx=0

Vф=dx/dt=ωо/ko

Фазовая скор. в общ. случае определ-ся параметрами волны, т.е. они разные для разных волн, входящих в сост. волнового пакета.

2.Групповая скор . U – скор. перемещ-я постоян ампитуды(волн пакета).

А=const при γ0

γ=[(dω/dk)o*t-x] Δk

(dω/dk)o*t – x=0

(dω/dk)o*dt – dx=0

U=dx/dt=(dω/dk)o

Задание1 2 .

Статистическое истолкование волн де Бройля. Волновая функция и ее свойства. Нормировка волновой функции. Принцип суперпозиции.

Статистическое истолкование волн де Бройля:

ПСИ * ПСИ(с волной) = |ПСИ|^2 – пси по модулю в квадрате есть мера вероятности найти частицу в данной области пространства в данный момент времени

dw = |ПСИ|^2*dV – вероятность найти микрочастицу в бесконечно малом объеме вблизи точки XYZ в данный момент времени.

w(круглая) = dw/dV = |ПСИ|^2 – плотность вероятности обнаружить микрочастицу в единичном объеме вблизи точки XYZ в данный момент времени

w = ИНТЕГРАЛ (по V(нулевому))|ПСИ|^2 dV – в объеме V(нулевое)

т к ПСИ-функция является комплексной величиной, она не имеет физического смысла. Физический смысл есть только у величины |ПСИ|^2

Волновая функция

Необходимость учета волновых свойств в поведении частиц вещества и на наличие объективной неопределенности в этом поведении. Эти особенности квантовомеханического движения находят свое выражение в том, что состояние движения микрочастицы задается не координатами и импульсами, а некоторой волновой функцией координат и времени (x, y, z, t), являющейся в общем случае комплексной. В простейшем случае – движения свободной частицы в направлении , - такая функция (волновая), имеет вид плоской волны:

- плоская волна де Бройля ,

где  = -1 – мнимая единица, = k/ - волновой вектор, а || = k = 2/ - волновое число.

На волновую функцию, как функцию статистического (вероятностного) распределения, накладывается условие нормировки , согласно которому интеграл по всей области определения (объему) волновой функции должен быть равен едине:

.

Интеграл от плотности вероятности по всему объему представляет собой полную, т. е. 100 % - ую вероятность, вероятность достоверного события. Частица (если она существует) в каком-либо месте из всей доступной для нее области, должна обнаруживаться обязательно, со 100 % - ой вероятностью. Условие нормировки позволяет находить амплитуду волновой функции.

Принцип суперпозиции состояний. ПСИ и С-функции. Классические величины, вступая в суперпозицию, имеют другие значения в результате этой суперпозиции по сравнению с исходными.

В квантовой физике:

Пусть есть квантовая система частиц, которая может находится в состоянии, описываемом волновой функцией ПСИ1 и может находится в другом состоянии, описываемом волновой функцией ПСИ2, тогда эта система может находится в состоянии ПСИ, являющимся линейной суперпозицией состояний ПСИ1 и ПСИ2

ПСИ = С1*ПСИ1 + С2*ПСИ2, где С1, С2 – коэффициенты

общая формула (m различных состояний):

ПСИ = СУММА(от m=1 до n) Сm*ПСИm

Задание1 3 .

Соотношения неопределенностей Гейзенберга. Принцип соответствия.


Ряд экспериментов, проведенных в 10-х – 20-х гг. ХХ в., показали, что частицы, которые привычно представлялись «кирпичиками мироздания», твердыми шариками – корпускулами, - проявляют волновые свойства. Была продемонстрирована дифракция электронов на кристалле, т.е. пучок электронов вел себя аналогично электромагнитной волне. В 1924 г. Луи де Бройль высказал гипотезу о том, что все частицы (а следовательно, и все тела, состоящие из этих частиц) обладают волновыми свойствами. Мерой этих волновых свойств является так называемая длина волны де Бройля . Действительно, сравним квант (фотон) частоты n и длины волны l = с/n и электрон с импульсом р = m e v :

.

Значение l Б для обычных тел крайне мало, и их волновые свойства нельзя наблюдать (напомним: для дифракции требовалось, чтобы размер объекта имел порядок l). Именно поэтому в опыте проявляются волновые свойства лишь таких легких частиц, как электрон. Самые крупные объекты, для которых были продемонстрированы волновые свойства – это молекулы фуллерена С 60 и С 70 (масса ~ 10 -24 кг).

Итак, одна из важнейших концепций современности – идея о единстве всех форм материи, и вещества, и поля. Нет принципиальных различий между ними, материя может проявлять себя и как вещество, и как поле. Эта концепция носит название корпускулярно-волнового дуализма (двойственности) материи .

При этом мы вынуждены характеризовать все наблюдаемые величины в терминах классической науки, т.е. на уровне того макромира, в котором существуем сами. Нам трудно вообразить объект, являющийся одновременно и частицей, и волной, поскольку в обыденной жизни мы с такими объектами не встречаемся. Приходится в методологических целях разделять эти понятия. Причины кроются в сложности нашего строения как мыслящих существ. В науке кибернетике показано, что самовоспроизводящаяся система должна обладать высоким уровнем сложности. Мы изучаем микромир как бы извне, будучи неизмеримо сложнее устроены, чем его объекты. Именно и только поэтому дуализм материи не кажется нам очевидным, естественным, присущим ей свойством.

3. Динамика микрочастиц. Принцип неопределенностей Гейзенберга

Если частица проявляет свойства волны, то она как бы размыта в пространстве, представляя собой волновой пакет. В этом случае невозможно говорить о ее координате. Но нельзя ли, например, принять за таковую начало волнового пакета или координату максимума его огибающей?

Оказывается, неопределенность координаты микрочастицы – это фундаментальное свойство микромира, более того, скорость микрочастицы также не поддается точному измерению. Этот факт никак не связан с точностью измерительных приборов.

Действительно, представим себе, что мы пытаемся измерить координату и скорость частицы и используем для этого свет. Минимальное расстояние, которое нам удастся измерить, будет определяться длиной волны этого света, и чем она меньше, тем точнее будет измерение. Но чем меньше длина волны света, тем выше его частота и больше энергия кванта. Квант, обладающий большой энергией, будет взаимодействовать с исследуемой частицей и передаст ей часть своей энергии. Та скорость, которую мы в результате измерим, будет вовсе не искомой первоначальной скоростью частицы, а следствием ее взаимодействия с измерительным прибором. Итак, чем точнее мы измеряем координату, тем меньше точность измерения скорости, и наоборот.

Для волны х р = l E/c = l hn/c =l h/l = h – это максимальная точность.

Формула, выражающая взаимосвязь между неопределенностями нахождения координаты х и импульса р частицы, была получена впервые В.Гейзенбергом и носит его имя:

Dх Dр ³ h –

- принцип неопределенностей Гейзенберга.

Аналогичные соотношения выполняются для неопределенностей Dу и Dz.

Для неопределенностей энергии и времени получается:

Итак, принцип неопределенностей – фундаментальное свойство природы, никак не связанное с несовершенством измерительных приборов, а носящее принципиальный характер.

Принцип неопределенностей, наряду с понятием о квантах, лег в основу новой квантовой механики, идеи и круг задач которой революционным образом отличались от всего известного науке ранее. Произошла ломка научной парадигмы, возник принципиально новый подход к рассмотрению явлений микромира, оказавшийся впоследствии очень плодотворным и в других областях науки.