Основные методы интегрирования замена переменной. Методы вычисления неопределенных интегралов. Метод интегрирования по частям

Приведение к табличному виду или метод непосредственного интегрирования . С помощью тождественных преобразований подынтегральной функции интеграл сводится к интегралу, к которому применимы основные правила интегрирования и возможно использование таблицы основных интегралов .

Пример

Задание. Найти интеграл $\int 2^{3 x-1} d x$

Решение. Воспользуемся свойствами интеграла и приведем данный интеграл к табличному виду.

$\int 2^{3 x-1} d x=\int 2^{3 x} \cdot 2^{-1} d x=\frac{1}{2} \int\left(2^{3}\right)^{x} d x=$

$=\frac{1}{2} \int 8^{x} d x=\frac{8^{x}}{2 \ln 8}+C$

Ответ. $\int 2^{3 x-1} d x=\frac{8^{x}}{2 \ln 8}+C$

ссылке →

2. Внесение под знак дифференциала

3. Интегрирование заменой переменной

Интегрирование заменой переменной или методом подстановки . Пусть $x=\phi(t)$, где функция $\phi(t)$ имеет непрерывную производную $\phi^{\prime}(t)$, а между переменными $x$ и $t$ существует взаимно однозначное соответствие. Тогда справедливо равенство

$\int f(x) d x=\int f(\phi(t)) \cdot \phi^{\prime}(t) \cdot d t$

Определенный интеграл зависит от переменной интегрирования, поэтому если выполнена замена переменных, то обязательно надо вернуться к первоначальной переменной интегрирования.

Пример

Задание. Найти интеграл $\int \frac{d x}{3-5 x}$

Решение. Заменим знаменатель на переменную $t$ и приведем исходный интеграл к табличному.

$=-\frac{1}{5} \ln |t|+C=-\frac{1}{5} \ln |3-5 x|+C$

Ответ. $\int \frac{d x}{3-5 x}=-\frac{1}{5} \ln |3-5 x|+C$

Подробнее о данном методе решении интегралов по ссылке →

4. Интегрирование по частям

Интегрированием по частям называют интегрирование по формуле

$\int u d v=u v-\int v d u$

При нахождении функции $v$ по ее дифференциалу $d v$ можно брать любое значение постоянной интегрирования $C$, так как она в конечный результат не входит. Поэтому для удобства будем брать $C=0$ .

Использование формулы интегрирования по частям целесообразно в тех случаях, когда дифференцирование упрощает один из сомножителей, в то время как интегрирование не усложняет другой.

Пример

Задание. Найти интеграл $\int x \cos x d x$

Решение. В исходном интеграле выделим функции $u$ и $v$, затем выполним интегрирование по частям.

$=x \sin x+\cos x+C$

Ответ. $\int x \cos x d x=x \sin x+\cos x+C$

Под непосредственным интегрированием понимают такой способ интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции и применения свойств неопределенного интеграла приводится к одному или нескольким табличным интегралам.

Пример 1. Найти.

 Разделив числитель на знаменатель, получим:

=
.

Отметим, что нет надобности после каждого слагаемого ставить произвольную постоянную, потому что их сумма есть также произвольная постоянная, которую мы пишем в конце.

Пример 2. Найти
.

 Преобразуем подынтегральную функцию следующим образом:

.

Применив табличный интеграл 1, получим:

.

Пример 3.

Пример 4.

Пример 5.

=
.

В некоторых случаях нахождение интегралов упрощается применением искусственных приемов.

Пример 6. Найти
.

 Умножив подынтегральное выражение на
находим

=
.

Пример 7 .

Пример 8 .

2. Интегрирование методом замены переменной

Вычислить заданный интеграл непосредственным интегрированием удается далеко не всегда, а иногда это связано с большими трудностями. В этих случаях применяют другие приемы. Одним из наиболее эффективных является метод замены переменной. Сущность его заключается в том, что путем введения новой переменной интегрирования удается свести заданный интеграл к новому, который сравнительно легко берется непосредственно. Существуют два варианта этого метода.

а) Метод подведения функции под знак дифференциала

По определению дифференциала функции
.

Переход в этом равенстве слева направо называют "подведением множителя
под знак дифференциала".

Теорема об инвариантности формул интегрирования

Всякая формула интегрирования сохраняет свой вид при подстановке вместо независимой переменной любой дифференцируемой функции от нее, т.е., если

, то и
,

где
- любая дифференцируемая функция отx . Ее значения должны принадлежать интервалу, в котором функцияопределена и непрерывна.

Доказательство:

Из того, что
, следует
. Возьмем теперь функцию
. Для ее дифференциала в силу свойства инвариантности формы первого дифференциала функции  имеем

Пусть требуется вычислить интеграл
. Предположим, что существуют дифференцируемая функция
и функция
такие, что подынтегральное выражение
может быть записано в виде

т.е. вычисление интеграла
сводится к вычислению интеграла
и последующей подстановке
.

Пример 1. .

Пример 2. .

Пример 3 . .

Пример 4 . .

Пример 5 .
.

Пример 6 . .

Пример 7 . .

Пример 8. .

Пример 9. .

Пример 10 . .

Пример 11.

Пример 12 . НайтиI=
(0).

 Представим подынтегральную функцию в виде:

Следовательно,

Таким образом,
.

Пример 12а. НайтиI =
,

.

 Так как
,

следовательно I = .

Пример 13. Найти
(0).

 Для того, чтобы свести этот интеграл к табличному, разделим числитель и знаменатель подынтегрального выражения на :

.

Мы подвели постоянный множитель под знак дифференциала. Рассматриваякак новую переменную, получим:

.

Вычислим также интеграл, который имеет важное значение при интегрировании иррациональных функций.

Пример 14. НайтиI=
(х а ,а 0).

 Имеем
.

Итак,

(х а ,а 0).

Представленные примеры иллюстрируют важность умения приводить данное

дифференциальное выражение
к виду
, гдеесть некоторая функция отx иg – функция более простая для интегрирования, чемf .

В этих примерах были проведены преобразования дифференциала, такие как


гдеb – постоянная величина


,

,

,

часто используемые при нахождении интегралов.

В таблице основных интегралов предполагалось, что x есть независимая переменная. Однако, эта таблица, как следует из изложенного выше, полностью сохраняет свое значение, если подx понимать любую непрерывно дифференцируемую функцию от независимой переменной. Обобщим ряд формул таблицы основных интегралов.

3а.
.

4.
.

5.
=
.

6.
=
.

7.
=
.

8.
(х а ,а 0).

9.
(а 0).

Операция подведения функции
под знак дифференциала эквивалентна замене переменнойх на новую переменную
. Нижеследующие примеры иллюстрируют это положение.

Пример 15. НайтиI=
.

 Произведем замену переменной по формуле
, тогда
, т.е.
иI=
.

Заменив u его выражением
, окончательно получим

I=
.

Выполненное преобразование эквивалентно подведению под знак дифференциала функции
.

Пример 16. Найти
.

 Положим
, тогда
, откуда
. Следовательно,

Пример 17. Найти
.

 Пусть
, тогда
, или
. Следовательно,

В заключение отметим, что разные способы интегрирования одной и той же функции иногда приводят к функциям, различным по своему виду. Это кажущееся противоречие можно устранить, если показать, что разность между полученными функциями есть постоянная величина (см. теорему, доказанную на лекции 1).

Примеры:

Результаты отличаются на постоянную величину, и, значит, оба ответа верны.

б) I=
.

Легко убедиться, что любые из ответов отличаются друг от друга только на постоянную величину.

б) Метод подстановки (метод введения новой переменной)

Пусть интеграл
(
- непрерывна) не может быть непосредственно преобразован к виду табличного. Сделаем подстановку
, где
- функция, имеющая непрерывную производную. Тогда
,
и

. (3)

Формула (3) называется формулой замены переменной в неопределенном интеграле.

Как правильно выбрать подстановку? Это достигается практикой в интегрировании. Но можно установить ряд общих правил и некоторых приемов для частных случаев интегрирования.

Правило интегрирования способом подстановки состоит в следующем.

    Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подынтегральное выражение, если нужно).

    Определяют, какую часть подынтегральной функции заменить новой переменной, и записывают эту замену.

    Находят дифференциалы обеих частей записи и выражают дифференциал старой переменной (или выражение, содержащее этот дифференциал) через дифференциал новой переменной.

    Производят замену под интегралом.

    Находят полученный интеграл.

    Производят обратную замену, т.е. переходят к старой переменной.

Проиллюстрируем правило примерами.

Пример 18. Найти
.


Пример 19. Найти
.


=
.

Этот интеграл найдем подведением
под знак дифференциала.

=.

Пример 20. Найти
(
).


, т.е.
, или
. Отсюда
, т.е.
.

Таким образом, имеем
. Заменяяего выражением черезx , окончательно находим интеграл, играющий важную роль в интегрировании иррациональных функций:
(
).

Студенты прозвали этот интеграл «длинным логарифмом».

Иногда вместо подстановки
лучше выполнять замену переменной вида
.

Пример 21. Найти
.


Пример 22. Найти
.

 Воспользуемся подстановкой
. Тогда
,
,
.

Следовательно, .

В ряде случаев нахождение интеграла основывается на использовании методов непосредственного интегрирования и подведения функций под знак дифференциала одновременно (см. пример 12).

Проиллюстрируем этот комбинированный подход к вычислению интеграла, играющего важную роль при интегрировании тригонометрических функций.

Пример 23. Найти
.


=
.

Итак,
.

Другой подход к вычислению этого интеграла:

.

Пример 24. Найти
.

Заметим, что удачный выбор подстановки обычно представляет трудности. Для их преодоления необходимо овладеть техникой дифференцирования и хорошо знать табличные интегралы.

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Лекция 12

1 . Непосредственное интегрирование – вычисление интегралов с помощью таблицы простейших интегралов, правил интегрирования и свойств неопределенных интегралов.

Пример 1 . +С .

Использована формула тригонометрии: .


Пример2 .

здесь выполнено очевидное преобразование подынтегрального выражения, и вместо переменной интегрирования х принято выражение (a–bx ), относительно этой переменной получается табличный интеграл. Такой прием иногда называют «загонкой » под знак дифференциала некоторого выражения.

Действительно: .


2 . Метод замены переменной . Метод подстановки .

Пусть y =f(x), x X . Введем новую переменную t , положив x =(t) , t T , тогдаy =f(x) =f((t)) ; dx =(t)dt и

После интегрирования последнего выражения нужно в результате перейти к старой переменной.

Этот метод применяется, когда подынтегральная функция является сложной функцией.


Пример. Найти интеграл: .

Решение .

1. Замена переменной : х=t/4 , тогда dx=dt/4.

Подставив х и dx в исходный интеграл, получим:

= .

2. Подстановка : = t , тогда dx = dt/4 . Получим тот же ответ.


3. Метод интегрирования « по частям» .

Пусть в промежутке Х заданы две непрерывно дифференцируемые функции u(x) и v(x) .

Запишем выражение для дифференциала их произведения:

Проинтегрируем левую и правую части полученного выражения:

отсюда следует формула интегрирования по частям:


Метод интегрирования по частям применяют для целого класса интегралов, например, когда подынтегральная функция содержит:

1) какую-либо функцию, которой нет в таблице простейших интегралов:

или ее произведение на многочленP(x) :

, .

В этом случае за u принимают, соответственно, , и т. д., а за dv – выражение P (x )dx ., так что одна из первообразных v легко может быть определена: ,

(здесь при интегрировании произвольную постоянную следует опустить);


2) произведение многочлена на тригонометрическую функцию или на экспоненту: .

В этом случае за u следует принять P(x) , а за dv – остальную часть подынтегрального выражения: exdx, sin xdx, и т.д.

Операцию интегрирования по частям можно применять многократно, что иногда позволяет решить задачу.


Пример 1 . Найти интеграл .

Решение .

Положим ln x = u , dx = dv (здесь P (x ) =1 ).

Тогда du = d (ln x ) = , v = = x – одна из первообразных.

Используя формулу интегрирования по частям ,

получаем:

= xln x =x ln x = x ln x x + C = x (ln x 1 ) + C .


Пример 2 .

Найти интеграл .

Решение.

Пусть x =u (P(x) =x ), =dvdu = , v =.

Используя формулу интегрирования по частям, получаем:



= x sin x = x sin x + cos x + C .


Пример 3 . Найти интеграл .

Решение .

Положим x =u , e x dx =dv .

Тогда du = dx , v =ex .

=xe x –=xe x – e x = e x (x – 1 ) +С.


Пример 4 . Найти интеграл .

Решение .

Положим x 2 =u , e х dx =dv .

Тогда du =2xdx , v =e x .

По формуле интегрирования по частям получаем:

=x 2 ∙e x 2 .

Применим еще раз интегрирование по частям (см. пример 3):

x 2 e x 2 = x 2 e x – 2(xe x – e x) + C =

= e x (х 2 2x +2) +C .


4. Метод неопределенных коэффициентов

Применяется для интегрирования рациональных функций

где и – многочлены, и степень числителя меньше степени знаменателя (правильная дробь), неправильную дробь можно путем деления многочлена на многочлен свести к сумме некоторого многочлена и правильной дроби.


По теореме из алгебры, всякий многочлен степени n со старшим коэффициентом, равным единице, имеющий действительные различные корни x 1 , x 2 , ..., x n , можно представить так:

Q (x )=( x – x 1 )(x – x 2 )(x – x n ).

Тогда правильную дробь можно разложить на простейшие дроби и записать:

где A 1 , A 2 , ..., A n – некоторые числа (неопределенные коэффициенты).


Приведя правую часть выражения к общему знаменателю и приравняв затем коэффициенты при одинаковых степенях х в числителе левой и правой части, получим систему уравнений для определения неизвестных коэффициентов A 1 , A 2 , ...,A n .

После этого интегрирование рациональной функции сводится к нахождению n интегралов вида:


Пример . Найти интеграл .

Решение. Подынтегральная функция есть правильная дробь, разложим ее на простейшие дроби.

Знаменатель имеет вещественные, различные корни: x 1 = 0 , x 2 =2 , x 3 = –2 . Следовательно, x3–4x = x (x–2 )(x +2 ) ,

Первообразная F(x) от функции f(x) - это такая функция, производная которой равна f(x) :
F′(x) = f(x), x ∈ Δ ,
где Δ - промежуток, на котором выполняется данное уравнение.

Совокупность всех первообразных называется неопределенным интегралом:
,
где C - постоянная, не зависящая от переменной x .

Основные формулы и методы интегрирования

Таблица интегралов

Конечная цель вычисления неопределенных интегралов - путем преобразований, привести заданный интеграл к выражению, содержащему простейшие или табличные интегралы.
См. Таблица интегралов >>>

Правило интегрирования суммы (разности)

Вынесение постоянной за знак интеграла

Пусть c - постоянная, не зависящая от x . Тогда ее можно вынести за знак интеграла:

Замена переменной

Пусть x - функция от переменной t , x = φ(t) , тогда
.
Или наоборот, t = φ(x) ,
.

С помощью замены переменной можно не только вычислить простые интегралы, но и упростить вычисление более сложных.

Правило интегрирования по частям

Интегрирование дробей (рациональных функций)

Введем обозначение. Пусть P k (x), Q m (x), R n (x) обозначают многочлены степеней k, m, n , соответственно, относительно переменной x .

Рассмотрим интеграл, состоящий из дроби многочленов (так называемая рациональная функция):

Если k ≥ n , то сначала нужно выделить целую часть дроби:
.
Интеграл от многочлена S k-n (x) вычисляется по таблице интегралов.

Остается интеграл:
, где m < n .
Для его вычисления, подынтегральное выражение нужно разложить на простейшие дроби.

Для этого нужно найти корни уравнения:
Q n (x) = 0 .
Используя полученные корни, нужно представить знаменатель в виде произведения сомножителей:
Q n (x) = s (x-a) n a (x-b) n b ... (x 2 +ex+f) n e (x 2 +gx+k) n g ... .
Здесь s - коэффициент при x n , x 2 + ex + f > 0 , x 2 + gx + k > 0 , ... .

После этого разложить дробь на простейшие:

Интегрируя, получаем выражение, состоящее из более простых интегралов.
Интегралы вида

приводятся к табличным подстановкой t = x - a .

Рассмотрим интеграл:

Преобразуем числитель:
.
Подставляя в подынтегральное выражение, получаем выражение, в которое входят два интеграла:
,
.
Первый, подстановкой t = x 2 + ex + f приводится к табличному.
Второй, по формуле приведения:

приводится к интегралу

Приведем его знаменатель к сумме квадратов:
.
Тогда подстановкой , интеграл

также приводится к табличному.

Интегрирование иррациональных функций

Введем обозначение. Пусть R(u 1 , u 2 , ... , u n) означает рациональную функцию от переменных u 1 , u 2 , ... , u n . То есть
,
где P, Q - многочлены от переменных u 1 , u 2 , ... , u n .

Дробно-линейная иррациональность

Рассмотрим интегралы вида:
,
где - рациональные числа, m 1 , n 1 , ..., m s , n s - целые числа.
Пусть n - общий знаменатель чисел r 1 , ..., r s .
Тогда интеграл сводится к интегралу от рациональных функций подстановкой:
.

Интегралы от дифференциальных биномов

Рассмотрим интеграл:
,
где m, n, p - рациональные числа, a, b - действительные числа.
Такие интегралы сводятся к интегралам от рациональных функций в трех случаях.

1) Если p - целое. Подстановка x = t N , где N - общий знаменатель дробей m и n .
2) Если - целое. Подстановка a x n + b = t M , где M - знаменатель числа p .
3) Если - целое. Подстановка a + b x - n = t M , где M - знаменатель числа p .

Если ни одно из трех чисел не является целым числом, то по теореме Чебышева интегралы данного вида не могут быть выражены конечной комбинацией элементарных функций.

В ряде случаев, сначала бывает полезным привести интеграл к более удобным значениям m и p . Это можно сделать с помощью формул приведения:
;
.

Интегралы, содержащие квадратный корень из квадратного трехчлена

Здесь мы рассматриваем интегралы вида:
,

Подстановки Эйлера

Такие интегралы могут быть сведены к интегралам от рациональных функций одной из трех подстановок Эйлера:
, при a > 0 ;
, при c > 0 ;
, где x 1 - корень уравнения a x 2 + b x + c = 0 . Если это уравнение имеет действительные корни.

Тригонометрические и гиперболические подстановки

Прямые методы

В большинстве случаев, подстановки Эйлера приводят к более длинным вычислениям, чем прямые методы. С помощью прямых методов интеграл приводится к одному из перечисленных ниже видов.

I тип

Интеграл вида:
,
где P n (x) - многочлен степени n .

Такие интегралы находятся методом неопределенных коэффициентов, используя тождество:

Дифференцируя это уравнение и приравнивая левую и правую части, находим коэффициенты A i .

II тип

Интеграл вида:
,
где P m (x) - многочлен степени m .

Подстановкой t = (x - α) -1 этот интеграл приводится к предыдущему типу. Если m ≥ n , то у дроби следует выделить целую часть.

III тип

Третий и наиболее сложный тип:
.

Здесь нужно сделать подстановку:
.
После чего интеграл примет вид:
.
Далее, постоянные α, β нужно выбрать такими, чтобы коэффициенты при t обратились в нуль:
B = 0, B 1 = 0 .
Тогда интеграл распадается на сумму интегралов двух видов:
;
,
которые интегрируются, соответственно подстановками:
z 2 = A 1 t 2 + C 1 ;
y 2 = A 1 + C 1 t -2 .

Общий случай

Интегрирование трансцендентных (тригонометрических и показательных) функций

Заранее отметим, что те методы, которые применимы для тригонометрических функций, также применимы и для гиперболических функций. По этой причине мы не будем рассматривать интегрирование гиперболических функций отдельно.

Интегрирование рациональных тригонометрических функций от cos x и sin x

Рассмотрим интегралы от тригонометрических функций вида:
,
где R - рациональная функция. Сюда также могут входить тангенсы и котангенсы, которые следует преобразовать через синусы и косинусы.

При интегрировании таких функций полезно иметь в виду три правила:
1) если R(cos x, sin x) умножается на -1 от перемены знака перед одной из величин cos x или sin x , то полезно другую из них обозначить через t .
2) если R(cos x, sin x) не меняется от перемены знака одновременно перед cos x и sin x , то полезно положить tg x = t или ctg x = t .
3) подстановка во всех случаях приводит к интегралу от рациональной дроби. К сожалению, эта подстановка приводит к более длинным вычислениям чем предыдущие, если они применимы.

Произведение степенных функций от cos x и sin x

Рассмотрим интегралы вида:

Если m и n - рациональные числа, то одной из подстановок t = sin x или t = cos x интеграл сводится к интегралу от дифференциального бинома.

Если m и n - целые числа, то интегралы вычисляются интегрированием по частям. При этом получаются следующие формулы приведения:

;
;
;
.

Интегрирование по частям

Применение формулы Эйлера

Если подынтегральное выражение линейно относительно одной из функций
cos ax или sin ax , то удобно применить формулу Эйлера:
e iax = cos ax + isin ax (где i 2 = -1 ),
заменив эту функцию на e iax и выделив действительную (при замене cos ax ) или мнимую часть (при замене sin ax ) из полученного результата.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.