Основное уравнение вращательного движения твердого тела относительно оси. Савельев И.В. Курс общей физики, том I. Скорость центра инерции получается

В этой статье описывается важный раздел физики - "Кинематика и динамика вращательного движения".

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела - это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r .

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

φ = φ(t).

Если φ измерять в радианах (1 рад - это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

ΔS = Δφr.

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

Угловая скорость материальной точки или тела - это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

ω = dφ/dt.

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

ω = φ/t.

Согласно предварительной формуле размерность угловой скорости

[ω] = 1 рад/с.

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T - физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

ω = 2π/T,

поэтому период вращения определим следующим образом:

T = 2π/ω.

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

ν = 1/T.

Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

ω = 2πν.

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε , характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

ε = dω/dt.

Если тело вращается, ускоряясь, то есть dω/dt > 0 , вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено - dω/dt < 0 , то векторы ε и ω противоположно направлены.

Замечание . Когда происходит неравномерное вращательное движение, вектор ω может меняться не только по величине, но и по направлению (при повороте оси вращения).

Связь величин, характеризующих поступательное и вращательное движение

Известно, что длина дуги с углом поворота радиуса и его величиной связана соотношением

ΔS = Δφ r.

Тогда линейная скорость материальной точки, выполняющей вращательное движение

υ = ΔS/Δt = Δφr/Δt = ωr.

Нормальное ускорение материальной точки, что выполняет вращательно поступательное движение, определим следующим образом:

a = υ 2 /r = ω 2 r 2 /r.

Итак, в скалярном виде

a = ω 2 r.

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

a = ε r.

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой m i на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (L i ) направлен перпендикулярно плоскости, проведенной через r i и υ i , и образует с ними правую тройку векторов (то есть при движении с конца вектора r i к υ i правый винт покажет направление вектора L i).

В скалярной форме

L = m i υ i r i sin(υ i , r i).

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

sin(υ i , r i) = 1.

Так что момент импульса материальной точки для вращательного движения примет вид

L = m i υ i r i .

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

M i = r i F i sin(r i , F i).

Считая, что r i sinα = l i , M i = l i F i .

Величина l i , равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы F i .

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

M = dL/dt.

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

L i = m i υ i r i .

Если вместо линейной скорости подставить ее выражение через угловую:

υ i = ωr i ,

то выражение для момента импульса примет вид

L i = m i r i 2 ω.

Величина I i = m i r i 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

L i = I i ω.

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

L = Iω.

Момент силы и момент инерции

Закон вращательного движения гласит:

M = dL/dt.

Известно, что представить момент импульса тела можно через момент инерции:

L = Iω.

M = Idω/dt.

Учитывая, что угловое ускорение определяется выражением

ε = dω/dt,

получим формулу для момента силы, представленного через момент инерции:

M = Iε.

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I 0 + ma 2 ,

где I 0 - начальный момент инерции тела; m - масса тела; a - расстояние между осями.

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).

Динамика вращательного движения твердого тела. Основное уравнение динамики вращательного движения. Момент инерции твердого тела относительно оси. Теорема Штейнера. Момент импульса. Момент силы. Закон сохранения и изменения момента импульса.

На прошлом занятии разобрали импульс и энергию. Рассмотрим величину момент импульса - характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью проходит вращение. Рассмотрим частицу А. r – радиусвектор, характеризующий положение относительно некоторой точки O, выбранной системы отсчёта. P-импульс в этой системе. Векторная величина L – момент импульса частицы А относительно точки О: Модуль вектора L: где α – угол между r и p, l=r sin α плечо вектора p относительно точки О.

Рассмотрим изменение вектора L со временем: = т. к. dr/dt =v, v направлен так же, как и p , т. к. dp/dt=F –равнодействующая всех сил. Тогда: Момент силы: М= Модуль момента силы: где l – плечо вектора F относительно точки O Уравнение моментов: производная по времени от момента импульса L частицы относительно некоторой точки О равна моменту M равнодействующей силы F относительно той же точки О: Если M = 0, то L=const – если момент равнодействующей силы равен 0 в течении интересующего промежутка времени, то импульс частицы остаётся постоянным в течении этого времени.

Уравнение моментов позволяет: Найти момент силы M относительно точки O в любой момент времени t , если известна зависимость от времени момента импульса L(t) частицы, относительно той же точки; Определить припращение момента импульса частицы относительно точки O за любой промежуток времени, если известна зависимость от времени момента сил M(t), действующего на эту частицу (относительно той же точки О). Используем уравнение моментов, и запишем элементарное приращение вектора L: Тогда, проинтегрировав выражение, найдём приращение L за конечный промежуток времени t: правая часть – импульс момента силы. Приращение момента импульса частицы за любой промежуток времени равно импульсу момента силы за это же время.

Момент импульса и момент силы относительно оси Возьмём ось z. Выберем точку О. L - момент импульса частицы А относительно точки, M- момент силы. Моментом импульса и моментом силы относительно оси z называют проекцию на эту ось векторов L и M. Обозначают Lz и Mz - они не зависят от точки выбора О. Производная по времени от момента импульса частицы относительно оси z равна моменту силы относительно этой оси. В частности: Mz=0 Lz=0. Если момент силы относительно некоторой подвижной оси z равен нулю, то момент импульса частицы относительно этой оси остаётся постоянным, при этом сам вектор L может меняться.

Закон сохранения моменте импульса Выберем произвольную систему частиц. Момент импульса данной системы будет векторная сумма моментов импульсов её отдельных частиц: Векторы определены относительно одной и той же оси. Момент импульса величина аддитивная: момент импульса системы равен сумме моментов импульсов её отдельных частей независимо от того, взаимодействуют они между собой или нет. Найдём изменение момента импульса: - суммарный момент всех внутренних сил относительно точки О. ; - суммарный момент всех внешних сил относительно точки О. Производная момента импульса системы по времени равна суммарному моменту всех внешних сил! (используя 3 закон Ньютона):

Момент импульса системы может изменяться под действием только суммарного момента всех внешних сил Закон сохранения импульса: момент импульса замкнутой системы частиц остаётся постоянным, т. е. не меняется со временем. : Справедливо для момента импульса, взятого относительно любой точки инерциальной системы отсчёта. Внутри системы изменения могут быть, но приращение момента импульса одной части системы равно убыли момента импульса другой её части. Закон сохранения момента импульса – не является следствием 3 -го закона Ньютона, а представляет самостоятельный общий принцип; один из фундаментальных законов природы. Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

Динамика твёрдого тела Два основных вида движения твёрдого тела: Поступательное: все точки тела получают за один и тот же промежуток времени равные по величине и направлению перемещения. Задать движение одной точки Вращательное: все точки твёрдого тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Задать ось вращения и угловую скорость в каждый момент времени Любое движение твёрдого тела может быть представлена как сумма двух этих движений!

Произвольное перемещение твёрдого тела из положения 1 в положение 2 можно представить как сумму двух перемещенийпоступательного перемещения из положения 1 в положения 1’ или 1’’ и поворота вокруг оси О’ или оси О’’. Элементарное перемещение ds: - «поступательного» - «вращательного» Скорость точки: - одинаковая для всех точек тела скорость поступательного движения - различная для разных точек тела скорость, связанная с вращением тела

Пусть система отсчёта неподвижна. Тогда движение можно рассмотреть как вращательное движение с угловой скоростью w в системе отсчёта, движущейся относительно неподвижной системы поступательно со скоростью v 0. Линейная скорость v’, обусловленная вращением твёрдого тела: Скорость точки при сложном движении: Существуют точки, которые при векторном перемножении векторов r и w дают вектор v 0. Эти точки лежат на одной прямой и образуют мгновенную ось вращения.

Движение твёрдого тела в общем случае определяется двумя векторными уравнениями: Уравнение движения центра масс: Уравнение моментов: Законы действующих внешних сил, точки их приложения и начальные условия скорость и положение каждой точки твердого тела в любой момент времени. Точки приложения внешних сил можно переносить вдоль направления действия сил. Равнодействующая сила- сила, сила которая равна результирующей сил F, действующих на твёрдое тело, и создаёт момент, равный суммарному моменту M всех внешних сил. Случай поля тяжести: равнодействующая сил тяжести проходит через центр масс. Сила, действующая на частицу: Суммарный момент сил тяжести относительно любой точки:

Условия равновесия твердого тела: тело будет оставаться в состоянии покоя, если нет причин, вызывающих его движение. По двум основным уравнениям движения тела, для это необходимо два условия: Результирующая внешних сил равна нулю: Сумма моментов всех внешних сил, действующих на тело относительно любой точки должен быть равен нулю: Если система неинерциальная, то кроме внешних сил необходимо учитывать силы инерции (силы, обусловленные ускоренным движением неинерциальной системы отсчета относительно инерциальной системы отсчета). Три случая движения твёрдого тела: Вращение вокруг неподвижной оси Плоское движение Вращение вокруг свободных осей

Вращение вокруг неподвижной оси Момент импульса твёрдого тела относительно оси вращения ОО’: где mi и pi- масса и расстояние от оси вращения i-й частицы твёрдого тела, wz –его угловая скорость. Введём обозначение: где I – момент инерции твёрдого тела относительно оси OO’: Момент инерции тела находится как: где dm и dv – масса и объём элемента тела, находящегося на расстоянии r от интересующей нас оси z; ρ- плотность тела в данной точке.

Моменты инерции однородных твёрдых тел, относительно оси проходящей через центр масс: Теорема Штейнера: момент инерции I относительно произвольной оси z равен моменту инерции Ic относительно оси Ic, параллельной данной и проходящей через центр масс C тела, плюс произведение массы m тела на квадрат расстояния a между осями:

Уравнение динамики вращения твёрдого тела: где Mz – суммарный момент всех внешних сил относительно оси вращения. Момент инерции I определяет инерционные свойства твёрдого тела при вращении: при одном и том же значении момента сил Mz тело с большим моментом инерции приобретает меньшее угловое ускорения βz. Mz включает и моменты сил инерции. Кинетическая энергия вращающегося твёрдого тела (ось вращения неподвижна): пусть скорость частицы вращающегося твёрдого тела – Тогда: где I – момент инерции относительно оси вращения, w – его угловая скорость. Работа внешних сил при вращении твердого тела вокруг неподвижной оси определяется действием момента Mz этих сил относительно данной оси.

Плоское движение твёрдого тела При плоском движении центра масс твердого тела движется в определённой плоскости, неподвижной в данной системе отсчёта К, а вектор его угловой скорости w перпендикулярен этой плоскости. Движение описывают два уравнения: где m – масса тела, F-результирующая всех внешних сил, Ic и Mcz- момент инерции и суммарный момент всех внешних сил- оба относительно оси, проходящей через центр тела. Кинетическая энергия твёрдого тела при плоском движении складывается из энергии вращения в системе вокруг оси, проходящей центр масс, энергии связанной с движением центра масс: где Ic –момент инерции относительно оси вращения (через ЦМ), w – угловая скорость тела, m – его масса, Vc – скорость центра масс тела системе отсчёта K.

Вращение вокруг свободных осей Ось вращения, направление которой в пространстве остаётся неизменным без действия на неё каких либо сил извне, называют свободной осью вращения тела. Главные оси тела – три взаимно перпендикулярные оси, проходящие через его центр масс, которые могут служить свободными осями. Для удержания оси вращения в неизменном направлении к ней необходимо приложить момент M некоторых внешних сил F: Если угол равен 90 градусам, то L совпадает по направлению с w, т. е. М=0!- направление оси вращения будет оставаться неизменным без внешнего воздействия При вращении тела вокруг любой главной оси вектор момента импульса L совпадает по направлению с угловой скоростью w: где I -момент инерции тела относительно данной оси.

«Физика - 10 класс»

Угловое ускорение.


Ранее мы получили формулу, связывающую линейную скорость υ, угловую скорость ω и радиус R окружности, по которой движется выбранный элемент (материальная точка) абсолютно твёрдого тела, которое, вращается относительно неподвижной оси:

Мы знаем, что линейные скорости и ускорения точек твёрдого тела различны. В то же время угловая скорость всех точек твёрдого тела одинакова.

Угловая скорость - векторная величина. Направление угловой скорости определяется по правилу буравчика. Если направление вращения ручки буравчика совпадает с направлением вращения тела, то поступательное движение буравчика указывает направление вектора угловой скорости (рис. 6.1).

Однако равномерное вращательное движение встречается довольно редко. Гораздо чаще мы имеем дело с движением, при котором угловая скорость изменяется, очевидно, это происходит в начале и конце движения.

Причиной изменения угловой скорости вращения является действие на тело сил. Изменение угловой скорости со временем определяет угловое ускорение .

Bектор угловой скорости - это скользящий вектор. Независимо от точки приложения его направление указывает направление вращения тела, а модуль определяет быстроту вращения,

Среднее угловое ускорение равно отношению изменения угловой скорости к промежутку времени, за которое это изменение произошло:

При равноускоренном движении угловое ускорение постоянно и при неподвижной оси вращения характеризует изменение угловой скорости по модулю. При увеличении угловой скорости вращения тела угловое ускорение направлено в ту же сторону, что и угловая скорость (рис. 6.2, а), а при уменьшении - в противоположную (рис. 6.2, б).

Так как угловая скорость связана с линейной скоростью соотношением υ = ωR, то изменение линейной скорости за некоторый промежуток времени Δt равно Δυ =ΔωR. Разделив левую и правую части уравнения на Δt, имеем или а = εR, где а - касательное (линейное) ускорение , направленное по касательной к траектории движения (окружности).

Если время измерено в секундах, а угловая скорость - в радианах в секунду, то одна единица углового ускорения равна 1 рад/с 2 , т. е. угловое ускорение выражается в радианах на секунду в квадрате.

Неравномерно движутся при запуске и остановке любые вращающиеся тела, например ротор в электродвигателе, диск токарного станка, колесо автомобиля при разгоне и др.


Момент силы.


Для создания вращательного движения важно не только значение силы, но также и точка её приложения. Отворить дверь, оказывая давление около петель, очень трудно, в то же время вы легко её откроете, надавливая на дверь как можно дальше от оси вращения, например на ручку. Следовательно, для вращательного движения существенно не только значение силы, но и расстояние от оси вращения до точки приложения силы. Кроме этого, важно и направление приложенной силы. Можно тянуть колесо с очень большой силой, но так и не вызвать его вращения.

Момент силы - это физическая величина, равная произведению силы на плечо:

M = Fd,
где d - плечо силы, равное кратчайшему расстоянию от оси вращения до линии действия силы (рис. 6.3).

Очевидно, что момент силы максимален, если сила перпендикулярна радиус-вектору, проведённому от оси вращения до точки приложения этой силы.

Если на тело действует несколько сил, то суммарный момент равен алгебраической сумме моментов каждой из сил относительно данной оси вращения.

При этом моменты сил, вызывающих вращение тела против часовой стрелки, будем считать положительными (сила 2), а моменты сил, вызывающих вращение по часовой стрелке, - отрицательными (силы 1 и 3) (рис. 6.4).

Основное уравнение динамики вращательного движения. Подобно тому как опытным путём было показано, что ускорение тела прямо пропорционально действующей на него силе, было установлено, что угловое ускорение прямо пропорционально моменту силы:

Пусть на материальною точку, движующуюся по окружности, действует сила (рис. 6.5). Согласно второму закону Ньютона в проекции на касательное направление имеем mа к = F к. Умножив левую и правую части уравнения на r, получим ma к r = F к r, или

mr 2 ε = М. (6.1)

Заметим, что в данном случае r - кратчайшее расстояние от оси вращения до материальной точки и соответственно точки приложения силы.

Произведение массы материальной точки на квадрат расстояния до оси вращения называют моментом инерции материальной точки и обозначают буквой I.

Таким образом, уравнение (6.1) можно записать в виде I ε = М, откуда

Уравнение (6.2) называют основным уравнением динамики вращательного движения .

Уравнение (6.2) справедливо и для вращательного движения твёрдого тела , имеющего неподвижную ось вращения, где I - момент инерции твёрдого тела, а М - суммарный момент сил, действующих на тело. В этой главе при расчёте суммарного момента сил мы рассматриваем только силы или их проекции, принадлежащие плоскости, перпендикулярной оси вращения.

Угловое ускорение, с которым вращается тело, прямо пропорционально сумме моментов сил, действующих на него, и обратно пропорционально моменту инерции тела относительно данной оси вращения.

Если система состоит из набора материальных точек (рис. 6.6), то момент инерции этой системы относительно данной оси вращения ОО" равен сумме моментов инерции каждой материальной точки относительно этой оси вращения: I = m 1 r 2 1 + m 2 r 2 2 + ... .

Момент инерции твёрдого тела можно вычислить разделив тело на малые объёмы, которые можно считать материальными точками, и просуммировать их моменты инерции относительно оси вращения. Очевидно, что момент инерции зависит от положения оси вращения.

Из определения момента инерции следует, что момент инерции характеризует распределение массы относительно оси вращения.

Приведём значения моментов инерции для некоторых абсолютно твёрдых однородных тел массой m.

1. Момент инерции тонкого прямого стержня длиной l относительно оси, перпендикулярной к стержню и проходящей через его середину (рис. 6.7), равен:

2. Момент инерции прямого цилиндра (рис. 6.8), или диска относительно оси ОО", совпадающей с геометрической осью цилиндра или диска:

3. Момент инерции шара

4. Момент инерции тонкого обруча радиусом R относительно оси, проходящей через его центр:

Момент инерции по физическому смыслу во вращательном движении играет роль массы, т. е. он характеризует инертность тела по отношению к вращательному движению. Чем больше момент инерции, тем сложнее тело заставить вращаться или, наоборот, остановить вращающееся тело.

Работа при вращении тела идет на увеличение его кинетической энергии . Поскольку , то или .

Учитывая, что , получим . Следовательно, момент силы,

действующей на тело, равен произведению момента инерции тела на угловое ускорение. Если ось вращения совпадает со свободной осью (см. 7.7), то имеет место векторное равенство

Это равенство представляет собой основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Пример 4.5.1. Тонкий стержень длиной и массой вращается вокруг неподвижной оси с угловым ускорением . Ось вращения перпендикулярна стержню и проходит через его середину. Определить момент силы, действующий на стержень.

Решение:

Согласно основному уравнению динамики вращательного движения вращающий момент связан с угловым ускорением следующим соотношением: ; где момент инерции стержня относительно оси вращения. Т.к. ось вращения проходит через центр масс стержня, то .

Следовательно, момент силы, действующий на стержень, .

Ответ: .

Пример 4.5.2. Вал в виде сплошного цилиндра массой насажен на горизонтальную ось. На цилиндр намотан нерастяжимый шнур, к свободному концу которого подвешена гиря массой . С каким ускорением будет опускаться гиря, если ее предоставить самой себе?

Решение:

Сделаем чертеж (рис. 4.5.1). Груз опускается с ускорением . На него действуют силы тяжести и натяжения шнура . Вал вращается против часовой стрелки с угловым ускорением . На вал действуют силы тяжести , сила реакции со стороны оси, на которую вал опирается, и сила реакции со стороны шнура . Вращающий момент создает только сила , т.к. линия действия сил и проходит через ось вращения (плечо этих сил равно 0).

Основное уравнение динамики поступательного движения груза имеет вид:

. В проекции на ось Oy: .

Основное уравнение динамики вращательного движения вала имеет вид: .

Если сила, действующая на тело, создает момент, способствующий вращению в заданном направлении, то ее момент считаем положительным (направление вектора момента силы совпадает с направлением углового ускорения ), если препятствует – момент считаем отрицательным (направления и противоположны). Следовательно, в скалярной форме (в проекции на направление углового ускорения) основное уравнение динамики вращательного движения будет иметь вид: .

Учитывая, что ось вращения проходит через центр масс цилиндрического вала перпендикулярно плоскости его основания , где радиус основания цилиндра, а вращающий момент (плечо силы равно радиусу основания цилиндра), то.

По третьему закону Ньютона (шнур нерастяжим), поэтому . Тангенциальное ускорение точек, лежащих на ободе вала, связано с его угловым ускорением соотношением: . С таким же ускорением движется любая точка шнура, на котором подвешен груз. Следовательно, , откуда . Подставив в уравнение (1), получим:и .



Ответ: .

Пример 4.5.3. Через блок в виде диска, имеющего массу , перекинута тонкая гибкая нить, к концам которой подвешены грузы массами и . С каким ускорением будут двигаться грузы, если их предоставить самим себе? Трением пренебречь.

Решение:

Сделаем чертеж (рис. 4.5.2). Первый груз будет двигаться поступательно вверх с ускорением , второй – опускаться с таким же ускорением. Уравнения поступательного движения грузов в векторной форме имеют вид .

В проекции на направление оси :

, откуда .

Согласно основному уравнению динамики вращательного движения . При движении грузов диск ускоренно вращается по часовой стрелке, следовательно, сила способствует вращению , а сила тормозит вращение . Поэтому в скалярной форме (в проекции на направление углового ускорения), т.к. плечо сил равно радиусу диска .

Учитывая, что момент инерции диска , а линейное ускорение грузов равно

тангенциальному ускорению точек обода диска, связанного с угловым ускорением соот-

ношением , то , откуда . . В скалярной форме (в проекции на направление углового ускорения)

Ответ: .

Динамика вращательного движения твердого тела.

    Момент инерции.

    Момент силы. Основное уравнение динамики вращательного движения.

    Момент импульса.

    Момент инерции.

(Рассмотрим опыт со скатывающимися цилиндрами.)

При рассмотрении вращательного движения необходимо ввести новые физические понятия: момент инерции, момент силы, момент импульса.

Момент инерции является мерой инертности тела при вращательном движении тела вокруг неподвижной оси.

Момент инерции материальной точки относительно неподвижной оси вращения равен произведению её массы на квадрат расстояния до рассматриваемой оси вращения (рис.1):

Зависит только от массы материальной точки и её положения относительно оси вращения и не зависит от наличия самого вращения.

Момент инерции - скалярная и аддитивная величина

Момент инерции тела равен сумме моментов инерции всех его точек

.

В случае непрерывного распределения массы эта сумма сводится к интегралу:

,

где - масса малого объема тела ,  плотность тела, - расстояние от элемента до оси вращения.

Момент инерции является аналогом массы при вращательном движении. Чем больше момент инерции тела, тем труднее изменить угловую скорость вращаемого тела. Момент инерции имеет смысл только при заданном положении оси вращения.

Бессмысленно говорить просто о “моменте инерции”. Он зависит:

1)от положения оси вращения;

2)от распределения массы тела относительно оси вращения, т.е. от формы тела и его размеров.

Экспериментальным доказательством этого является опыт со скатывающимися цилиндрами.

Произведя интегрирование для некоторых однородных тел, можно получить следующие формулы (ось вращения проходит через центр масс тела):

    Момент инерции обруча (толщиной стенок пренебрегаем) или полого цилиндра:


    Момент инерции диска или сплошного цилиндра радиуса R:


    Момент инерции шара


    Момент инерции стержня


Если для тела известен момент инерции относительно оси, проходящей через центр масс, то момент инерции относительно любой оси, параллельной первой, находится по теореме Штейнера : момент инерции тела относительно произвольной оси равен моменту инерции J 0 относительно оси, параллельной данной и проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между осями.

где d расстояние от центра масс до оси вращения.

Центр масс - воображаемая точка, положение которой характеризует распределение массы данного тела. Центр масс тела движется так же, как двигалась бы материальная точка той же массы под действием всех внешних сил, действующих на данное тело.

Понятие момента инерции было введено в механику отечественным ученым Л. Эйлером в середине XVIII века и с тех пор широко используется при решении многих задач динамики твердого тела. Значение момента инерции необходимо знать на практике при расчете различных вращающихся узлов и систем (маховиков, турбин, роторов электродвигателей, гироскопов). Момент инерции входит в уравнения движения тела (корабля, самолета, снаряда, и т.п.). Его определяют, когда хотят узнать параметры вращательного движения летательного аппарата вокруг центра масс при действии внешнего возмущения (порыва ветра и т.п.). Для тел переменной массы (ракеты) с течением времени изменяется масса и момент инерции.

2 .Момент силы.

Одна и та же сила может сообщать вращающемуся телу разные угловые ускорения в зависимости от её направления и точки приложения. Для характеристики вращающего действия силы вводят понятие момента силы.

Различают момент силы относительно неподвижной точки и относительно неподвижной оси. Моментом силы относительно точки О (полюса) называется векторная величина, равная векторному произведению радиус-вектора проведенного из точки О в точку приложения силы, на вектор силы:

Поясняющий это определение рис. 3 выполнен в предположении, что точка О и вектор лежат в плоскости чертежа, тогда вектор так же располагается в этой плоскости, а вектор  к ней и направлен от нас (как векторное произведение 2-х векторов; по правилу правого буравчика).

Модуль момента силы численно равен произведению силы на плечо:

где - плечо силы относительно точки О,  - угол между направлениями и, .

Плечо - кратчайшее расстояние от центра вращения до линии действия силы.

Вектор момента силы сонаправлен с поступательным движением правого буравчика, если его рукоятку вращать по направлению вращающего действия силы. Момент силы - аксиальный (свободный) вектор, он направлен вдоль оси вращения, не связан с определенной линией действия, его можно переносить в

пространстве параллельно самому себе.

Моментом силы относительно неподвижной оси Z называется проекция вектора на эту ось (проходящую через точку О).

Если на тело действуют несколько сил, то результирующий момент сил относительно неподвижной оси Z равен алгебраической сумме моментов относительно этой оси всех сил, действующих на тело.

Если сила, приложенная к телу, не лежит в плоскости вращения, её можно разложить на 2 компоненты: лежащую в плоскости вращения и  к ней F n . Как видно из рисунка 4, F n вращения не создает, а приводит только к деформации тела; вращение тела обусловлено только составляющей F  .

Вращающееся тело можно представить как совокупность материальных точек.

Выберем произвольно некоторую точку с массой m i , на которую действует сила, сообщая точке ускорение (рис. 5). Поскольку вращение создает только тангенциальная составляющая, для упрощения вывода направлена перпендикулярно оси вращения.

В этом случае

Согласно второму закону Ньютона: . Умножим обе части равенства на r i ;

,

где - момент силы, действующей на материальную точку,

Момент инерции материальной точки.

Следовательно, .

Для всего тела: ,

т.е. угловое ускорение тела прямо пропорционально моменту действующих на него внешних сил и обратно пропорционально его моменту инерции. Уравнение

(1) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси, или второй закон Ньютона для вращательного движения.

3 . Момент импульса.

При сравнении законов вращательного и поступательного движений усматривается аналогия.

Аналогом импульса является момент импульса. Понятие момента импульса также можно ввести относительно неподвижной точки и относительно неподвижной оси, однако в большинстве случаев его можно определить следующим образом. Если материальная точка вращается вокруг неподвижной оси, то её момент импульса относительно этой оси по модулю равен

где m i - масса материальной точки,

 i - её линейная скорость

r i - расстояние до оси вращения.

Т.к. для вращательного движения

где - момент инерции материальной точки относительно этой оси.

Момент импульса твердого тела относительно неподвижной оси равен сумме моментов импульсов всех его точек относительно этой оси:

где - момент инерции тела.

Т.о., момент импульса твердого тела относительно неподвижной оси вращения равен произведению его момента инерции относительно этой оси на угловую скорость и сонаправлен с вектором угловой скорости.

Продифференцируем уравнение (2) по времени:

Уравнение (3) - ещё одна форма основного уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента

импульса твердого тела относительно неподвижной оси вращения равна моменту внешних сил относительно той же оси

Это уравнение является одним из важнейших уравнений ракетодинамики. В процессе движения ракеты положение ее центра масс непрерывно изменяется, вследствие чего возникают различные моменты сил: лобового сопротивления, аэродинамической силы, сил создаваемых рулем высоты. Уравнение вращательного движения ракеты под действием всех приложенных к ней моментов сил совместно с уравнениями движения центра масс ракеты и уравнениями кинематики с известными начальными условиями позволяют определить положение ракеты в пространстве в любой момент времени.