Глия и ее функции. Морфофункциональная характеристика нервной ткани. Строение и функции нейрона. Классификация нейронов. Нейроглия: строение и функции. Происхождение ПП обусловлено

Астроглия представлена астроцитами – самые крупн глиальн клетки, ктр встречаются во всех отделах НС.

Клетка отростчатая

Овальное ядро

Цитоплазма с умеренно развитыми органеллами

Многочислен гранулы гликогена и промежуточн филаменты

Маркер астроцитов – глиальный фибриллярн кислый белок (ГФКБ)

Отростки оканчиваются «ножками» на стенках кровеносн сосудов

Астроциты подразделяются на плазматические (локализуются в зоне сер вещ-ва ЦНС; отростки короткие, ветвятся; низкое содержание ГФКБ) и волокнистые астроциты(локализуются в белом вещ-ве ЦНС; отростки длинные, не ветвятся; высокое содерж ГФКБ).

Ф-ии: метаболит и регуляторн, опорная, защитная (АПК,), формирование гематоэнцефалического барьера.

Эпендимная глия образована клетками кубической или цилинтрической формы, однослойные пласты ктр выстилают мозговые оболочки (менинготелий), желудочки мозга и центральн канала спинного мозга.

Форма кубическая

Апикальн часть - микроворсинки

В цитоплазме пузырьки

Базальн лабиринт (ф-я транспортная)

Ф-я: синтез спинномозговой жидкости, гематоликворный барьер.

Танициты – специализир клетки эпендимы.

Форма-призмат

Апикальн часть – реснички

Базальн часть – отходн отросток

Ф-я: транспорт вещ-в из кровеносн капилляров, гематоликворный барьер.

19)Нейроглия. Морфофункциональная характеристика. Классификация нейроглии. Олигодендроглия (мантийные и шванновские клетки) и микроглия. Строение, локализация. Функции .

Нейроглия – обширн гетероген группа эл-в нервной ткани, обеспечивающая деятельность нейронов (вещ-во, заполняющее пространство м\у нейронами и нервн волокнами и связывающего их воедино). Ф-и: опорная, трофическая, разграничительная, барьерная, секреторная, защитная.

Развитие – тот же источник, что и у нервных клеток (нервн трубка, нервн гребень).

Нейроглия включает макроглию и микроглию. Макроглия подразделяется на астроглию, олигодендроглию, эпендимную глию.

Олигодендроглия – обширн группа разнобразн мелких клеток с короткими немногочислен отростками, ктр окружают тела нейронов и входят в состав нервн волокон и нервн окончаний. Встречаются в ЦНС и ПНС; хар-ризуются темн ядром, плотн цитоплазмой с хорошо развитым синт аппаратом, высоким содежанием митохондрий, лизосом и гранул гликогена.

Олигодендроциты подразделяются на мантийные клетки (уплощен форма; малое круглое или овальное ядро; ф-я: барьерная, регуляторная; черепномозговые и вегетативные ганглии) и леммоциты, или Шванновские клетки (ПНС и ЦНС; образование нервн волокон, изолирующие нервн отростки; способность к выработке миелиновой обоолчки).

Микроглия – совокупность мелких удлиненных звездчатых клеток (микроглиоцитов) с плотной цитоплазмой и сравнительно короткими, ветвящимися отростками, приемущественно располагающиеся вдоль капилляров в ЦНС; имеютмезенхимное происхождение, развиваются из моноцитов (периваскулярных макрофагов мозга), относятся к макрофагально-моноцитарной системе. Ф-я – защитная (в том числе иммунная) – гематоэнцефалический барьер.

Нервные волокна. Морфофункциональная характеристика. Классификация. Миелиновые волокна. Особенности формирования, строение и функции. Ультраструктурная организация миелинового нервного волокна. Узловые перехваты (Ранвье).

Нервные волокна представляют собой отростки нейронов, покрытые глиальными оболочками. Различают 2 вида: безмиелиновые и миелиновые. Состав: отросток нейрона (осевой цилиндр), окруженного оболочкой из клеток олигодендроглии (в ПНС их называют леммоцитами).

Классификация нервн волокон основана на различиях их строения и ф-ии (скорости проведения нервн испульсов). Три основных типа нервн волокон:

1). Волокна типа А – толстые миелиновые, с далеко отстоящими узловыми перехватами. Проводят импульсы с высокой скоростью (15-120 м/с); подразделяются на 4 типа (α,β,γ,δ) с уменьшающимся диаметром с скоростью проведения импульса.

2). Волокна типа В – средней толщины, миелиновые, меньшего диаметра, чем волокна типа А, с более тонкой миелиновой оболочкой и более низкой скоростью проведения нервн импульсов (5-15 м/с).

3). Волокна типа С – тонкие безмиелиновые, проводят импульсы со сравнительно малой скоростью (0,5-2 м/с).

Миелиновые нервн волокна встречаются в ЦНС и ПНС и хар-ризуются высокой скоростью проведения нервных импульсов (5-120 м/с). При формировании безмиелинового нервного волокна осевой цилиндр (отросток нейрона) погружается в тяж из леммоцитов, цитолеммы которых прогибаются и плотно охватывают осевой цилиндр в виде муфты, края которой смыкаются над ним, образуя дупликатуру клеточной мембраны - мезаксон . Соседние леммоциты входящие в состав сплошного глиального тяжа своими цитолеммами образуют простые контакты. Безмиелиновые нервные волокна имеют слабую изоляцию, допускающую переход нервного импульса с одного волокна на другое, как в области мезаксона, так и в области межлеммоцитарных контактов. Миелиновые волокна значительно толще безмиелиновыхи содержат цилиндры большего диаметра. В миелиновом волокне осевой цилиндр непосредственно окружен особой миелиновой оболочкой, вокруг ктр располагается тонкий слой, включающий цитоплазму и ядро леммоцита – нейролемма. Снаружи волокно покрыто также базальной мембраной. Миелиновая оболочка содержит высокие концентрации липидов интенсивно окрашивается осмиевой кислотой, имея под световым микроскопом вид однородного слоя, однако под электронным микроскопом обнаруживается, что она возникает в рез-те слияния многочисленных (до 300) мембранных витков (пластин). Другие компоненты мембраны и промежутки не окрашиваются, поэтому периодически встречаются светлые полоски − насечки миелина (насечки HYPERLINK "http://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%81%D0%B5%D1%87%D0%BA%D0%B0_%D0%BC%D0%B8%D0%B5%D0%BB%D0%B8%D0%BD%D0%B0"Шмидта-Лантермана), которые соответствуют небольшим прослойкам цитоплазмы леммоцита. Толщина миелина по длине волокна неоднородна, а в местах контактов соседних леммоцитов слоистая структура исчезает и контактируют лишь наружные слои, содержащие цитоплазму и ядро. Места их контактов называются узловыми перехватами (перехватами HYPERLINK "http://ru.wikipedia.org/w/index.php?title=%D0%9F%D0%B5%D1%80%D0%B5%D1%85%D0%B2%D0%B0%D1%82_%D0%A0%D0%B0%D0%BD%D0%B2%D1%8C%D0%B5&action=edit&redlink=1"Ранвье), возникающими вследствие отсутствия здесь миелина и истончения волокна.

Нейроглия – совокупность клеток нервной ткани. Нейроглия осуществляет трофическую, разграничительную, секреторную и защитную функции.

В ЦНС выделяют макроглию и микроглию.

Макроглия имеет нейральное происхождение и подразделяется на эпиндемоциты, астроциты и олигодендроциты. Эпиндемоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Астроциты выполняют опорную и разграничительную функции. Олигодендроциты участвуют в миелинизации аксонов.

Микроглия представляет собой фагоцитирующие, отростчатые клетки, которые располагаются в сером и белом веществе мозга.

В периферической нервной системе нейроглия представлена леммоцитами(Шванновскими клетками), клетками-сателлитами.

Шванновские клетки формируются вдоль аксонов периферической нервной системы. Обеспечивают миелинизацию нейронов, выполняют опорную и трофическую функции. Клетки-сателлиты обеспечивают жизнеобеспечение нейронов периферической нервной системы.

2-ая часть Рефлекторные дуги могут быть двух видов:

простые – моносинаптические рефлекторные дуги (рефлекторная дуга сухожильного рефлекса), состоящие из 2 нейронов (рецепторного (афферентного) и эффекторного), между ними имеется 1 синапс;

сложные – полисинаптические рефлекторные дуги. В их состав входят 3 нейрона (их может быть и больше) – рецепторный, один или несколько вставочных и эффекторный.

12)вопрос Общий план строения нервной системы.

Вся нервная система делится на центральную и периферическую. К центральной нервной системе относится головной и спинной мозг. От них по всему телу расходятся нервные волокна -периферическая нервная система . Она соединяет мозг с органами чувств и с исполнительными органами - мышцами и железами.

2) Развитие

Нервная система человека развивается из наружного зародышевого листка - эктодермы.

3) функции

Основные функции нервной системы – получение, хранение и переработка информации из внешней и внутренней среды, регуляция и координация деятельности всех органов и органных систем.

13)вопрос Периферическая нервная система:

отделы: сенсорные нервы, двигательные нервы делятся на: соматическая и автономная делится на: симпатическая и парасимпатическая

14) вопрос Черепно-мозговые и спинномозговые нервы

к лассификация и функции: Нумерация Название Функции
I Обонятельный Восприимчивость к запахам
II Зрительный Передача зрительных раздражений в мозг
III Глазодвигательный Движения глаз, зрачковая реакция на световое воздействие
IV Блоковый Передвижение глаз вниз, в наружную сторону
V Тройничный Лицевая, ротовая, глоточная чувствительность; деятельность мышц, ответственных за акт жевания
VI Отводящий Передвижение глаз в наружную сторону
VII Лицевой Движение мышц (мимические, стременная); деятельность слюнной железы, сензитивность переднего участка языка
VIII Слуховой Передача звуковых сигналов и импульсов из внутреннего уха
IX Языкоглоточный Движение мышцы-поднимателя глотки; деятельность парных слюнных желез, чувствительность горла, полости среднего уха и слуховой трубы
X Блуждающий Двигательные процессы в мышцах горла и некоторых участков пищевода; обеспечение чувствительности в нижнем участке горла, частично в слуховом проходе и барабанных перепонках, твердой оболочке мозга; деятельность гладких мышц (ЖКТ, легких) и сердечных
XI Добавочный Отведение головы в различных направлениях, пожимание плеч и приведение лопаток к позвоночнику
XII Подъязычный Шевеления и передвижения языка, акты глотания и жевания



15) вопрос Вегетативная нервная система:

Центры вегетативной нервной системы. Высшим вегетативным центром является гипоталамус. Гипоталамус представляет собой скопление около 50 пар ядер, которые объединяются в группы: преоптическую переднюю, среднюю, наружную и заднюю. Роль различных групп ядер гипоталамуса определяется их связью с симпатическим или парасимпатическим отделами ВНС. Раздражение передних ядер гипоталамуса вызывает изменения в организме, подобные тем, которые наблюдаются при активации парасимпатической нервной системы. Раздражение задних ядер гипоталамуса сопровождается эффектами, аналогичными стимуляции симпатической нервной системы. Основными структурно-функциональными особенностями гипоталамуса являются следующие:
Нейроны гипоталамуса обладают рецепторной функцией – они способны непосредственно улавливать изменения химического состава крови и ликвора. Это достигается, во-первых, за счет мощной сети капилляров и их исключительно высокой проницаемости; во-вторых, за счет того, что в гипоталамусе имеются клетки, избирательно чувствительные к изменениям параметров крови. Эти «рецепторные» нейроны гипоталамуса практически не адаптируются. Они генерируют импульсы до тех пор, пока тот или иной показатель организма не нормализуется в результате адаптивной работы вегетативных эффекторов.
Гипоталамус имеет обширные двусторонние связи с лимбической системой, с корой большого мозга, с центральным серым веществом среднего мозга, соматическими ядрами ствола мозга. Связи эти осуществляются не только нервными, но и нейросекреторными клетками, аксоны которых идут в лимбическую систему, таламус, продолговатый мозг.
Гипоталамус вырабатывает собственные гормоны, участвующие в регуляции вегетативных функций. Эффекторные гормоны окситоцин и вазопрессин вырабатываются в нейронах ядер передней группы гипоталамуса (супраоптическое и паравентрикулярное ядра) в неактивном состоянии, затем поступают в нейрогипофиз, где активируются и потом секретируются в кровь. Рилизинг-гормоны гипоталамуса (либерины) стимулируют функцию гипофиза, а статины (ингибирующие гормоны) тормозят ее. Эти гормоны вырабатываются нейронами аркуатного и вентромедиального ядер гипоталамуса и регулируют выработку тропных гормонов гипофиза. Либирины и статины гипоталамуса высвобождаются из нервных отростков в области срединного возвышения и через гипоталамо-гипофизарную портальную систему с кровью поступают к аденогипофизу. Регуляция по принципу обратной отрицательной связи, в которой участвуют гипоталамус, гипофиз и периферические эндокринные железы, осуществляется и в отсутствии влияний вышележащих отделов ЦНС.
В гипоталамусе имеются центры регуляции водного и солевого обмена (супраоптическое и паравентрикулярное ядра); белкового, углеводного и жирового обмена; центры регуляции сердечно-сосудистой системы, эндокринных желез; центр голода (латеральное гипоталамическое ядро) и насыщения (вентролатеральное ядро); центр жажды; центр отказа от питья; центр регуляции мочеотделения; центр сна и бодрствования (супрахиазматическое ядро); центр полового поведения; центры, обеспечивающие эмоциональные переживания человека, и другие центры, участвующие в процессах адаптации организма.



Периферический отдел:
вегетативные (автономные) нервы, ветви и нервные волокна, выходящие из головного и спинного мозга;
вегетативные (автономные, висцеральные) сплетения;
узлы (ганглии) вегетативных (автономных, висцеральных) сплетений;
симпатический ствол (правый и левый) с его узлами (ганглиями), межузловыми и соединительными ветвями и симпатическими нервами;
концевые узлы (ганглии) парасимпатической части вегетативной нервной системы.

Вегетативная нервная система выполняет ряд функций:
Управляет деятельностью внутренних органов, кровеносных и лимфатических сосудов, осуществляя иннервацию гладкомышечных клеток и железистого эпителия.
Регулирует обмен веществ, приспосабливая его уровень к снижению или повышению функции органа. Тем самым осуществляет адаптационно-трофическую функцию, в основе которой лежит транспорт аксоплазмы - процесс непрерывного движения различных веществ от тела нейрона по отросткам в ткани. Одни из них включаются в обмен веществ, другие активируют метаболизм, улучшая трофику ткани.

Координирует работу всех внутренних органов, поддерживая постоянство внутренней среды организма.

Конечный мозг.

1) локализация серого и белого вещества

Белое вещество головного мозга состоит из большого числа нервных волокон, которые заполняют пространство межу мозговой корой и базальными ядрами. Они распространяются в различных направлениях и образуют проводящие пути больших полушарий.

17. Спинной мозг .● Спинной мозг имеет вид толстого шнура, диаметр которого составляет около 1 см. Длина спинного мозга у взрослого человека 43 см. Масса – от 34 до 38 грамм, что составляет 2% от массы головного мозга. Он несколько уплощен в передне-заднем направлении. Спинной мозг имеет сегментарное строение. На уровне большого затылочного отверстия он переходит в головной мозг, а на уровне 1-2 поясничных позвонков заканчивается мозговым конусом, от которого отходит терминальная (концевая) нить, окруженная корешками поясничных и крестцовых спинномозговых нервов. В местах отхождения нервов к верхним и нижним конечностям имеются утолщения – шейное и поясничное (пояснично-крестцовое).В утробном развитии эти утолщения не выражены. Шейное утолщение – на уровне V-VI шейных сегментов и пояснично-крестцовое в – области III-IV поясничных сегментов. Морфологических границ между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональным.

Передняя срединная щель и задняя срединная борозда делят спинной мозг на две симметричные половины. Каждая половина, в свою очередь, имеет по две слабо выраженные продольные борозды, из которых выходят передние и задние корешки спинномозговых нервов. Передний корешок состоит из отростков двигательных (моторных, эфферентных, центробежных) нервных клеток, расположенных в переднем роге спинного мозга. Задний корешок, чувствительный (афферентный, центростремительный), представлен совокупностью проникающих в спинной мозг центральных отростков псевдоуниполярных клеток, тела которых образуют спинномозговой узел.

От спинного мозга отходит 31 пара спинномозговых нервов: 8 пар шейных, 12 пар грудных, 5 пар поясничных, 5 пар крестцовых и пара копчиковых. Участок спинного мозга, соответствующий двум парам корешков (два передних и два задних), называют сегментом.

Передние корешки выполняют различную функцию. Задние корешки содержат только афферентные волокна и проводят в спинной мозг чувствительные импульсы, а передние содержат эфферентные волокна, которые передают двигательные импульсы из спинного мозга к мышцам.

● Строение и функции.Располагается спинной мозг в позвоночном канале, его покрывают оболочки. Начинается спинной мозг на уровне большого затылочного отверстия черепа и заканчивается на уровне второго поясничного позвонка. Ниже находятся оболочки спинного мозга, окружающие корешки нижних спинномозговых нервов. Если рассмотреть поперечный срез спинного мозга, то можно увидеть, что центральную его часть занимает имеющее форму бабочки серое вещество, состоящее из нервных клеток. В центре серого вещества виден узкий центральный канал, заполненный спинномозговой жидкостью. Снаружи от серого вещества располагается белое вещество. Оно содержит нервные волокна, связывающие нейроны спинного мозга между собой и с нейронами головного мозга. От спинного мозга симметрично парами отходят спинномозговые нервы, их 31 пара. Каждый нерв начинается от спинного мозга в виде двух тяжей, или корешков, которые, соединяясь, образуют нерв. Спинномозговые нервы и их ветви направляются к мышцам, костям, суставам, коже и внутренним органам. Спинной мозг в нашем организме выполняет две функции: рефлекторную и проводящую. Рефлекторная функция спинного мозга состоит в ответной реакции нервной системы на раздражение. В спинном мозге находятся центры многих безусловных рефлексов, например рефлексов, обеспечивающих движения диафрагмы, дыхательных мышц. Спинной мозг (под контролем головного мозга) регулирует работу внутренних органов: сердца, почек, органов пищеварения. В спинном мозге замыкаются рефлекторные дуги, регулирующие функции сгибательных и разгибательных скелетных мышц туловища, конечностей. Рефлексы бывают врожденные (которые можно определить с самого рождения) и приобретенные (образуются в процессе жизни при обучении), замыкаются они на различных уровнях. Например, коленный рефлекс замыкается на уровне 3-4-го поясничных сегментов. Проверяя его, врач убеждается в сохранности всех элементов рефлекторной дуги, в том числе и сегментов спинного мозга. Проводниковая функция спинного мозга заключается в передаче импульсов с периферии (от кожи, слизистых оболочек, внутренних органов) в центр (головной мозг) и наоборот. Проводники спинного мозга, составляющие его белое вещество, осуществляют передачу информации в восходящем и нисходящем направлении. В головной мозг подается импульс о воздействии извне, и у человека формируется определенное ощущение (например, Вы гладите кота, и у Вас возникает чувство чего-то мягкого и гладкого в руке) Из спинного мозга выходят центробежные волокна, по которым импульсы идут к органам и тканям. Повреждение спинного мозга нарушает его функции: участки тела, расположенные ниже места повреждения, теряют чувствительность и способность к произвольному движению.Головной мозг оказывает большое влияние на деятельность спинного мозга. Под контролем головного мозга находятся все сложные движения: ходьба, бег, трудовая деятельность. Спинной мозг является очень важной анатомической структурой. Его нормальное функционирование обеспечивает всю жизнедеятельность человека. Знание особенностей строения и функционирования спинного мозга необходимо для диагностики заболеваний нервной системы.

●Передними корешками спинного мозга являются нервные окончания, которые содержатся в сером веществе. Задними корешками являются чувствительные клетки, а точнее, их отростки. На стыках передних и задних корешков расположен спинномозговой узел. Этот узел и создают чувствительные клетки.

Корешки спинного мозга человека отходят от позвоночного столба по обе стороны. С левой и правой стороны отходит по тридцать одному корешку.

Сегментом называют определенную часть органа, находящуюся между каждой пары таких корешков.Если вспомнить математику, то получается, что у каждого человека по тридцать одному такому сегменту:

пять сегментов приходится на поясничную область;

пять крестцовых сегментов;

восемь шейных;

двенадцать грудных;

один копчиковый.

На поперечном срезе спинного мозга серое вещество имеет форму бабочки или буквы “Н”, в нем выделяют более широкий передний рог и узкий задний рог. В передних рогах располагаются крупные нервные клетки - двигательные нейроны.

Серое вещество задних рогов спинного мозга неоднородно. Основная масса нервных клеток заднего рога образует собственное ядро, а в основании заднего рога заметно хорошо очерченное прослойкой белого вещества грудное ядро, состоящее из крупных нервных клеток.

Клетки всех ядер задних рогов серого вещества - это, как правило, вставочные, промежуточные, нейроны, отростки которых идут в белом веществе спинного мозга к головному мозгу.

Состав клеток, находящихся в задних и передних рогах спинного мозга, неоднороден. В задних рогах располагаются чувствительные клетки, отростки которых переходят через среднюю линию спинного мозга в боковой столб противоположной стороны и составляют путь поверхностной чувствительности. В основании заднего рога выделяется обособленная группа клеток, относящихся к системе мозжечковой проприоцепции. Отростки этих клеток направляются в боковые столбы спинного мозга (передний перекрещивается на уровне собственного сегмента, задний - идет в боковой канатик своей стороны) и в составе спинноцеребеллярных путей доходят до ядра шатра червя мозжечка.

Кроме того, в передних и задних рогах спинного мозга расположено большое количество вставочных нейронов, обеспечивающие замыкание рефлекторных дуг, связь между выше и ниже расположенными сегментами спинного мозга, связь между половинами спинного мозга, обеспечивающие десинхронизацию работы?-больших мотонейронов передних рогов спинного мозга и реципроктное торможение (клетки Реншоу) . Между клетками серого вещества расположены клетки глии.

18.Головной мозг .

Головной мозг состоит из пяти отделов: продолговатого мозга, мозжечка, среднего, промежуточного мозга и переднего мозга.

Продолговатый мозг является продолжением спинного мозга. В нем находятся ядра VIII-XII пар череп но мозговых нервов. Здесь расположены жизненно важные центры регуляции дыхания, сердечно-сосудистой деятельности пищеварения, обмена веществ. Ядра продолговатого мозга принимают участие в осуществлении безусловных пищевых рефлексов (отделение пищеварительных соков, сосание, глотание), защитных рефлексов (рвота, чихание, кашель, моргание). Проводниковая функция продолговатого мозга заключается в передаче импульсов от спинного мозга в головной и в обратном направлении.

Мозжечок и варолиев мост образуют задний мозг. Через мост проходят нервные пути, связывающие передний и средний мозг с продолговатым и спинным. В мосту расположены ядра V-VIII пар черепно-мозговых нервов. Серое вещество мозжечка находится снаружи и образует кору слоем 1-2,5 мм. Мозжечок образован двумя полушариями, соединенными червем. Ядра мозжечка обеспечивают координацию сложных двигательных актов организма. Большие полушария головного мозга через мозжечок регулируют тонус скелетных мышц и координируют движения тела. Мозжечок принимает участие в регуляции некоторых вегетативных функций (состав крови, сосудистые рефлексы).

Средний мозг расположен между варолиевым мостом и промежуточным мозгом. Состоит из четверохолмия и ножек мозга. Через средний мозг проходят восходящие пути к коре больших полушарий и мозжечку и нисходящие пути к продолговатому и спинному мозгу (проводниковая функция). В среднем мозге находятся ядра III и IV пар черепно-мозговых нервов. С их участием осуществляются первичные ориентировочные рефлексы на свет и звук: движение глаз, поворот головы в сторону источника раздражения. Средний мозг также участвует в поддержании тонуса скелетных мышц.

Промежуточный мозг расположен над средним мозгом. Главные его отделы - таламус (зрительные бугры) и гипоталамус (подбугровая область). Через таламус к коре головного мозга проходят центростремительные импульсы от всех рецепторов организма (за исключением обонятельного). Информация получает в таламусе соответствующую эмоциональную окраску и передается в большие полушария мозга. Гипоталамус является главным подкорковым центром регуляции вегетативных функций организма, всех видов обмена веществ, температуры тела, постоянства внутренней среды (гомеостаза), деятельности эндокринной системы. В гипоталамусе расположены центры чувства насыщения, голода, жажды, удовольствия. Ядра гипоталамуса участвуют в регуляции чередованиясна и бодрствования.

Передний мозг - самый крупный и развитый отдел головного мозга. Он представлен двумя полушариями - левым и правым, отделенными продольной щелью. Полушария соединены толстой горизонтальной пластинкой - мозолистым телом, которое образовано нервными волокнами, идущими поперечно из одного полушария в другое. Три борозды - центральная, теменно-затылочная и боковая - делят каждое полушарие на четыре доли: лобную, теменную, височную и затылочную. Снаружи полушария покрывает слой серого вещества - коры, внутри расположены белое вещество и подкорковые ядра. Подкорковые ядра - филогенетически древняя часть мозга, управляющая бессознательными автоматическими действиями (инстинктивное поведение).

Кора мозга имеет толщину 1,3-4,5 мм. Благодаря наличию складок, извилин и борозд общая площадь коры взрослою человека составляет 2000-2500 см2. Кора состоит из 12-18 млрд нервных клеток, расположенных в шесть слоев.

Хотя кора больших полушарий функционирует как единое целое, функции отдельных ее участков неодинаковы. В сенсорные (чувствительные) зоны коры поступают импульсы от всех рецепторов организма. Так, зрительная зона коры расположена в затылочной доле, слуховая - в височной и т. д. В ассоциативных зонах коры осуществляется хранение, оценка, сопоставление поступающей информации с полученной ранее и т. п. Таким образом, в этой зоне происходят процессы запоминания, научения, мышления. Двигательные (моторные) зоны отвечают за сознательные движения. От них нервные импульсы поступают к поперечно-полосатой мускулатуре.

Белое вещество переднего мозга образовано нервными волокнами, связывающих между собой разные отделы мозга.

Таким образом, большие полушария головного мозга являются высшим отделом ЦНС, обеспечивающим наиболее высокий уровень приспособления организма к меняющимся условиям внешней среды. Кора больших полушарий является материальной основой психической деятельности.

● Боковые желудочки представляют собой полости в мозге, в которых содержится ликвор. Такие желудочки являются наиболее крупными в желудочковой системе. Левый желудочек называют первый, а правый – вторым. Стоит отметить, что боковые желудочки при помощи межжелудочковых или монроевых отверстий сообщаются с третьим желудочком. Их расположение – ниже мозолистого тела, с двух сторон от срединной линии, симметрично. Каждый боковой желудочек имеет передний рог, задний рог, тело, нижний рог.

Третий желудочек – расположен между зрительными буграми. Обладает кольцевидной формой, поскольку в него прорастают промежуточные зрительные бугры. Стенки желудочка заполнены центральным серым мозговым веществом. В нем находятся подкорковые вегетативные центры. Сообщается третий желудочек с водопроводом среднего мозга. Сзади назальной спайки он сообщается через межжелудочковое отверстие с боковыми желудочками головного мозга.

Четвертый желудочек – расположен между продолговатым мозгом и мозжечком. Сводом этого желудочка служат мозговые парусы и червячок, а дном – мост и продолговатый мозг.

Этот желудочек является остатком полости мозгового пузыря, Желудочки головного мозгарасположенного сзади. Именно потому это общая полость для отделов заднего мозга, которые составляют ромбовидный мозг, – мозжечок, продолговатый мозг, перешеек и мост.

Четвертый желудочек по форме похож на палатку, в которой можно увидеть дно и крышу. Стоит отметить, что дно либо основание этого желудочка имеет ромбовидную форму, оно как бы вдавлено в заднюю поверхность моста и продолговатого мозга. Потому его принято называть ромбовидной ямкой. В задненижний угол этой ямки открыт канал спинного мозга. При этом в передневерхнем углу происходит сообщение четвертого желудочка с водопроводом.

Латеральные углы слепо заканчиваются в виде двух карманов, которые вентрально загибаются возле нижних ножек мозжечка.

Боковые желудочки головного мозга имеют относительно крупные размеры и обладают С-образной формой. В мозговых желудочках происходит синтез спинномозговой жидкости или ликвора, которая после этого она оказывается в субарахноидальном пространстве. Если отток ликвора из желудочков нарушается, человеку ставят диагноз «гидроцефалия».

●ЧТО ТАКОЕ МОЗГОВЫЕ ОБОЛОЧКИ ЧЕЛОВЕКА

Мозг человека состоит из мягких тканей, подверженных механическим повреждениям. Мозговые оболочки непосредственно покрывают головной мозг, обеспечивая его безопасность во время ходьбы, бега или случайных ударов.

Между слоями постоянно циркулирует ликвор. Спинномозговая жидкость обтекает мозг человека, благодаря чему он постоянно находится в подвешенном состоянии, что обеспечивает дополнительную амортизацию.

Помимо защиты от механических воздействий, каждая из трех оболочек выполняет несколько второстепенных функций.

ФУНКЦИИ ОБОЛОЧЕК МОЗГА

Спинной мозг человека защищают три оболочки, берущие свое начало в мезодерме (среднем зародышевом листке). Каждый слой имеет свои функции и анатомическое строение.

Принято различать:

анатомическое расположение мозговых оболочек Твердая оболочка – является самой плотной среди всех защитных слоев. Наружная поверхность прилегает к внутренней части черепа. Твердая оболочка головного мозга участвует в образовании отростков, отделяющих друг от друга несколько важных участков. Среди них: мозговой серп, намет и серп мозжечка, диафрагму седла.

Паутинная оболочка – помимо защитной функции, участвует в циркуляции ликвора. Образует межпаутинное пространство, по которому циркулирует спинномозговая жидкость.

Мягкая или сосудистая оболочка – при помощи глиальной ткани срастается с поверхность спинного мозга. Внутри слоя располагаются артерии и многочисленные сосуды, окутывающие мозг. Слой участвует в работе системы кровоснабжения.

●Проводящие пути головного мозга виды

Выделяют ассоциативные, комиссуральные и проекционные проводящие пути головного мозга. Первые проводящие пути головного мозга соединяют различные участки серого вещества, расположенного в том же полушарии. Среди них выделяют короткие и длинные. Короткие ассоциативные пути расположены в пределах мозговой доли – внутридолевые волокна. Они также подразделяются на интракор-тикальные (дугообразные), когда пучок волокон не покидает кору и огибает извилину в форме дуги; и экстракортикальные, когда нервный путь выходит за пределы серого вещества. Длинные ассоциативные пути соединяют группы нервных клеток, лежащих в одном полушарии, но в различных его долях. К наиболее значимым из них относят верхний продольный пучок (связывает кору лобной, теменной и затылочной долей), нижний продольный пучок (соединяет височную и затылочную доли) и крючковидный пучок (связывает лобную долю с передней частью височной). Ко-миссуральные, или спаечные нервные пути связывают участки серого вещества различных полушарий. С их помощью координируется деятельность аналогичных нервных центров полушарий мозга. Переходы комиссуральных волокон с одного полушария на другое образуют спайки. Всего их три: мозолистое тело, передняя спайка и спайка свода. Мозолистое тело образовано волокнами, соединяющими новые отделы мозга, в белом веществе полушарий эти волокна расходятся веерообразно. Колено и клюв мозолистого тела несут волокна от лобных долей головного мозга, в белом веществе пучки этих волокон образуют лобные щипцы по бокам от продольной щели головного мозга. Участки коры центральных извилин, височных, теменных долей связаны посредством ствола мозолистого тела. Валик мозолистого тела несет волокна от задних областей теменных, а также затылочных долей. В белом веществе по бокам от продольной щели головного мозга пучки этих волокон образуют затылочные щипцы. Спайка свода соединяет серое вещество височных долей и гиппокампа разных полушарий. Передняя спайка состоит из волокон, идущих от медиальных участков коры височных долей и коры области обонятельных треугольников. Проекционные проводящие пути головного мозга

Кроме ассоциативных и комиссуральных проводящих путей существуют еще проекционные, соединяющие серое вещество больших полушарий с нижележащими структурами центральной нервной системы, в том числе со спинным мозгом, а также просто различных скоплений нейронов, различных отделов ЦНС между собой. Благодаря проекционным волокнам осуществляется взаимосвязь и совместная деятельность структур ЦНС. Среди проекционных путей выделяют восходящие (афферентные) и нисходящие (эфферентные). Первые несут в головной мозг информацию, полученную от рецепторов как внешней, так и внутренней среды. В связи с этим по характеру идущей информации восходящие пути бывают экстероцептивными (импульсы от болевых, температурных, тактильных рецепторов кожи и импульсы от органов чувств – зрительные, вкусовые, слуховые, обонятельные), про-приоцептивными (несут импульсы от рецепторов мышечно-сухо-жильно-суставного аппарата о положении тела, мышечной работе и прочее) и интероцептивными (проводят информацию о внутренней среде организма, полученную от рецепторов внутренних органов и сосудов).

Экстероцептивные проводящие пути головного мозга

К экстероцептивным проводящим путям головного мозга, несущим информацию от рецеп-торного аппарата кожи, относят латеральный и передний спинно-таламические пути. Температурная и болевая чувствительность проводится по латеральному спинно-таламическому пути. Путь состоит из двух нейронов. Тело первого лежит в спинальном ганглии, его дендриты заканчиваются в коже и слизистых оболочках. По аксонам импульсы поступают в задних корешках в спинной мозг, где в задних рогах переходят на тело второго нейрона. В спинном мозге аксон второго нейрона переходит на противоположную сторону (посегментный переход). По боковому канатику пучок поднимается в луковицу мозга, где находится сзади от ядра оливы. По покрышке моста и среднего мозга аксон второго нейрона направляется к переднему бугорку таламуса и образует синапс с телом нейрона таламокортикальной проекции латерального спинно-таламического пути (возможно рассмотрение трехней-ронного латерального спинно-кортикального пути температурной и болевой чувствительности). Аксон этого нейрона проходит через середину заднего бедра внутренней капсулы и образует синапсы с нейронами коры постцентральной извилины. Проводящий путь от рецепторов осязания и давления представлен передним спинно-таламическим путем. Этот путь трехнейронный. Тело первого нейрона расположено в спинномозговом чувствительном узле. Клетки отдают аксоны в задний корешок, откуда они проходят в задний рог и прерываются, соединяясь с телом второго нейрона. В свою очередь, его центральные отростки через переднюю серую спайку проникают в передний рог противоположной стороны. В составе переднего канатика аксон второго нейрона следует в вышележащие отделы. В продолговатом мозге волокна сливаются с волокнами, образующими медиальную петлю. В дорсальном латеральном ядре таламуса лежит тело третьего нейрона; здесь прерывается центральный отросток второго нейрона. Отходящие от ядра волокна на своем пути проходят через заднее бедро внутренней капсулы в кору постцентральной извилины, коркового центра общей чувствительности.

Часто при повреждении рогов с одной стороны чувство осязания и давления исчезает частично. Это объясняется тем, что часть волокон не переходит на противоположную сторону и идет к коре вместе с другими восходящими путями.

Проприоцептивные проводящие пути головного мозга

К проприоцептивным относятся несколько проводящих путей. Бульбо-таламический путь проводит импульсы от рецепторов опорно-двигательного аппарата в постцентральную извилину. Тела первых нейронов в спинномозговом узле отдают центральные отростки в задний корешок, откуда они проходят в задний канатик и далее к тонкому и клиновидному пучкам, которые находятся в продолговатом мозге и содержат одноименные ядра, в которых аксон первого соединяется с телом второго нейрона. Его отростки в межоливном слое формирует перекрест медиальных петель. Эти волокна, перешедшие на противоположную сторону, называют внутренними дугообразными. Некоторые волокна второго нейрона образуют задние и передние дугообразные волокна. Они, проходя по боковому канатику и нижней мозжечковой ножке, проводят импульсы мышечно-суставного чувства к червю мозжечка. Минуя покрышку моста, волокна соединяются с телом третьего нейрона, которое локализуется в дорсолатеральном ядре таламуса. Его отростки идут в постцентральную извилину.

Спинно-мозжечковые пути проводящие пути головного мозга

Задний спинно-мозжечковый путь, или пучок Флексига – это путь проприоцептивной чувствительности от рецепторов мышечного аппарата в кору червя мозжечка. От тела первого нейрона возбуждение идет по аксону в задний рог, к грудному ядру, в котором расположено тело второго нейрона. Перекреста волокон в этом пути нет, через нижнюю ножку аксон третьего нейрона следует в мозжечок. В составе этого пути отмечают также наличие волокон, по которым возможно проведение импульса до красного ядра, полушарий мозжечка и коры.

Передний спинно-мозжечковый путь, или пучок Говерса, устроен немного сложнее. От заднего его отличает то, что он делает два перекреста и в результате возвращается на свою сторону.

Среди проекционных путей нисходящего направления различают пирамидный и экстрапирамидные двигательные пути. По пирамидным путям импульсы следуют от коры до передних рогов спинного мозга либо до ядер черепных нервов. В пирамидных путях различают корково-ядерный, латеральный и передний корково-спинномозговой путь.

Корково-ядерный путь начинается от клеток Беца нижней части предцентральной извилины и идет к нижележащим отделам, проходя через колено внутренней капсулы. В продолговатом мозге волокна перекрещиваются и заканчиваются синапсами с телом второго нейрона в ядрах с III по VI и с IX по XII черепных нервов. Аксоны второго нейрона выходят как волокна черепных нервов и осуществляют иннервацию органов головы и шеи.

Латеральный корково-спинномозговой путь, как и передний, идет от клеток Беца верхних двух третей предцентральной извилины. Волокна проходят через начало задней ножки внутренней капсулы, ножки мозга и мост. Продолговатый мозг является местом перекреста латерального корково-спинномозгового пути, который далее продолжается до передних рогов спинного мозга, где происходит контакт аксона первого нейрона со вторым, отдающим двигательные ветви к мышцам. Волокна переднего корково-спинно-мозгового пути тоже перекрещиваются, но в спинном мозге.

Среди экстрапирамидных путей называют красноядерно-спинномозговой, преддверно-спинномозговой и корково-мосто-мозжечковый путь.

Красноядерно-спинномозговой путь начинается от красного ядра и тут же перекрещивается, затем идет по нижележащим отделам к мотонейронам спинного мозга по боковым канатикам.

Преддверно-спинномозговой путь начинается от ядер VIII пары черепных нервов, которые проецируются на латеральные части верхнего треугольника ромбовидной ямки, и продолжается до ядер передних канатиков спинного мозга. Этот путь делает возможными установочные реакции.

Корково-мостомозжечковый путь от клеток коры всех долей, кроме островковой. Аксоны этих клеток (корково-мостовые волокна) проходят через внутреннюю капсулу. Первый нейрон прерывается в основании моста на ядрах второго нейрона, которые отдают там же перекрещивающиеся аксоны (поперечные волокна моста), идущие к полушариям мозжечка.

19. Шейное сплетение.

Шейное сплетение {plexus cervicalis) образо­вано передними ветвями четырёх верхних шей­ных нервов. По выходе через межпозвоночное отверстие {foramen intervertebrale) эти нервы ложатся на переднюю поверхность глубоких мышц шеи на уровне верхних четырёх шей­ных позвонков позади грудино-ключично-со-сцевидной мышцы.

Шейное сплетение формирует чувствитель­ные, двигательные (мышечные) и смешанные ветви.

Чувствительные ветви. Из чувствительных ветвей образуются кожные нервы шеи (по­перечный нерв шеи, медиальные, промежу­точные и латеральные надключичные нервы, большой ушной нерв и малый затылочный нерв), описанные выше.

Двигательные ветви. Двигательные ветви шейного сплетения иннервирую

Нервная ткань выполняет функции восприятия, проведения и передачи возбуждения, полученного из внешней среды и внутренних органов, а также анализ, сохранение полученной информации, интеграцию органов и систем, взаимодействие организма с внешней средой.

Основные структурные элементы нервной ткани - клетки нейроны и нейроглия .

Нейроны

Нейроны состоят из тела (перикариона ) и отростков, среди которых выделяют дендриты и аксон (нейрит). Дендритов может быть множество, аксон всегда один.

Нейрон как любая клетка состоит из 3 компонентов: ядра, цитоплазмы и цитолеммы. Основной объём клетки приходится на отростки.

Ядро занимает центральное положение в перикарионе. В ядре хорошо развито одно или несколько ядрышек.

Плазмолемма принимает участие в рецепции, генерации и проведении нервного импульса.

Цитоплазма нейрона имеет различное строение в перикарионе и в отростках.

В цитоплазме перикариона находятся хорошо развитые органеллы: ЭПС, комплекс Гольджи, митохондрии, лизосомы. Специфичными для нейрона структурами цитоплазмы на светооптическом уровне являются хроматофильное вещество цитоплазмы и нейрофибриллы .

Хроматофильное вещество цитоплазмы (субстанция Ниссля, тигроид, базофильное вещество) проявляется при окрашивании нервных клеток основными красителями (метиленовым синим, толуидиновым синим, гематоксилином и т.д.).

Нейрофибриллы - это цитоскелет, состоящий из нейрофиламентов и нейротубул, формирующих каркас нервной клетки. Опорная функция.

Нейротубулы по основным принципам своего строения фактически не отличаются от микротрубочек. Как и всюду они несут каркасную (опорную) функцию, обеспечивают процессы циклоза. Кроме этого, в нейронах довольно часто можно видеть липидные включения (зерна липофусцина). Они характерны для старческого возраста и часто появляются при дистрофических процессах. У некоторых нейронов в норме обнаруживаются пигментные включения (например, с меланином), что обуславливает окрашивание нервных центров, содержащих подобные клетки (черная субстанция, голубоватое пятно).

В теле нейронов можно видеть также транспортные пузырьки, часть из которых содержит медиаторы и модуляторы. Они окружены мембраной. Их размеры и строение зависят от содержания того или иного вещества.

Дендриты - короткие отростки, нередко сильно ветвятся. Дендриты в начальных сегментах содержат органеллы подобно телу нейрона. Хорошо развит цитоскелет.

Аксон (нейрит) чаще всего длинный, слабо ветвится или не ветвится. В нем отсутствует грЭПС. Микротрубочки и микрофиламенты располагаются упорядочено. В цитоплазме аксона видны митохондрии, транспортные пузырьки. Аксоны в основном миелинизированы и окружены отростками олигодендроцитов в ЦНС, или леммоцитами в периферической нервной системе. Начальный сегмент аксона нередко расширен и имеет название аксонного холмика, где происходит суммация поступающих в нервную клетку сигналов, и если возбуждающие сигналы достаточной интенсивности, то в аксоне формируется потенциал действия и возбуждение направляется вдоль аксона, передаваясь на другие клетки (потенциал действия).

Аксоток (аксоплазматический транспорт веществ). Нервные волокна имеют своеобразный структурный аппарат - микротрубочки, по которым перемещаются вещества от тела клетки на периферию (антероградный аксоток ) и от периферии к центру (ретроградный аксоток ).

Нервный импульс передаётся по мембране нейрона в определённой последовательности: дендрит - перикарион - аксон.

Классификация нейронов

  • 1. По морфологии (по количеству отростков) выделяют :
    • - мультиполярные нейроны (г) -- с множеством отростков (их большинство у человека),
    • - униполярные нейроны (а) -- с одним аксоном,
    • - биполярные нейроны (б) -- с одним аксоном и одним дендритом (сетчатка глаза, спиральный ганглий).
    • - ложно- (псевдо-) униполярные нейроны (в) - дендрит и аксон отходят от нейрона в виде одного отростка, а затем разделяются (в спинномозговом ганглии). Это вариант биполярных нейронов.
  • 2. По функции (по расположению в рефлекторной дуге) выделяют :
    • - афферентные (чувствительные ) нейроны (стрелка слева) - воспринимают информацию и передают ее в нервные центры. Типичными чувствительными являются ложноуниполярные и биполярные нейроны спинномозговых и черепно-мозговых узлов;
    • - ассоциативные (вставочные ) нейроны осуществляют взаимодействие между нейронами, их большинство в ЦНС;
    • - эфферентные (двигательные ) нейроны (стрелка справа) генерируют нервный импульс и передают возбуждение другим нейронам или клеткам других видов тканей: мышечным, секреторным клеткам.

Нейроглия: строение и функции.

Нейроглия, или просто глия -- сложный комплекс вспомогательных клеток нервной ткани, общный функциями и, частично, происхождением (исключение -- микроглия).

Глиальные клетки составляют специфическое микроокружение для нейронов, обеспечивая условия для генерации и передачи нервных импульсов, а также осуществляя часть метаболических процессов самого нейрона.

Нейроглия выполняет опорную, трофическую, секреторную, разграничительную и защитную функции.

Классификация

  • § Микроглиальные клетки, хоть и входят в понятие глия, не являются собственно нервной тканью, так как имеют мезодермальное происхождение. Они представляют собой мелкие отростчатые клетки, разбросанные по белому и серому веществу мозга и способные кфагоцитозу.
  • § Эпендимальные клетки (некоторые ученые выделяют их из глии вообще, некоторые -- включают в макроглию) выстилают желудочки ЦНС. Имеют на поверхности реснички, с помощью которых обеспечивают ток жидкости.
  • § Макроглия -- производная глиобластов, выполняет опорную, разграничительную, трофическую и секреторную функции.
  • § Олигодендроциты -- локализуются в ЦНС, обеспечивают миелинизацию аксонов.
  • § Шванновские клетки -- распространены по периферической нервной системе, обеспечивают миелинизацию аксонов, секретируют нейротрофические факторы.
  • § Клетки-сателлиты, или радиальная глия -- поддерживают жизнеобеспечение нейронов периферической нервной системы, являются субстратом для прорастания нервных волокон.
  • § Астроциты, представляющие собой астроглию, исполняют все функции глии.
  • § Глия Бергмана, специализированные астроциты мозжечка, по форме повторяющие радиальную глию.

Эмбриогенез

В эмбриогенезе глиоциты (кроме микроглиальных клеток) дифференцируются из глиобластов, которые имеют два источника -- медуллобласты нервной трубки и ганглиобласты ганглиозной пластинки. Оба эти источника на ранних этапах образовались изэктодермы.

Микроглия же -- производное мезодермы.

2. Астроциты, олигодендроциты, микроглиоциты

нервный глиальный нейрон астроцит

Астроциты -- клетки нейроглии. Совокупность астроцитов называется астроглией.

  • § Опорная и разграничительная функция -- поддерживают нейроны и разделяют их своими телами на группы (компартменты). Эту функцию позволяет выполнять наличие плотных пучков микротрубочек в цитоплазме астроцитов.
  • § Трофическая функция -- регулирование состава межклеточной жидкости, запас питательных веществ (гликоген). Астроциты также обеспечивают перемещение веществ от стенки капилляра до цитолеммы нейронов.
  • § Участие в росте нервной ткани-астроциты способны выделять вещества, распределение которых задает направление роста нейронов в период эмбрионального развития. Рост нейронов возможен как редкое исключение и во взрослом организме в обонятельном эпителии, где нервные клетки обновляются раз в 40 дней.
  • § Гомеостатическая функция -- обратный захват медиаторов и ионов калия. Извлечение глутамата и ионов калия из синаптической щели после передачи сигнала между нейронами.
  • § Гематоэнцефалический барьер -- защита нервной ткани от вредных веществ, способных проникнуть от кровеносной системы. Астроциты служат специфическим «шлюзом» между кровеносным руслом и нервной тканью, не допуская их прямого контакта.
  • § Модуляция кровотока и диаметра кровеносных сосудов -- астроциты способны к генерации кальциевых сигналов в ответ на нейрональную активность. Астроглия участвует в контроле кровотока, регулирует высвобождение некоторых специфических веществ,
  • § Регуляция активности нейронов- астроглия способна высвобождать нейропередатчики.

Виды астроцитов

Астроциты делятся на фиброзные (волокнистые) и плазматические. Фиброзные астроциты располагаются между телом нейрона и кровеносным сосудом, а плазматические -- между нервными волокнами.

Олигодендроциты, или олигодендроглиоциты -- клетки нейроглии. Это -- наиболее многочисленная группа глиальных клеток.

Олигодендроциты локализуются в центральной нервной системе.

Олигодендроциты выполняют также трофическую функцию по отношению к нейронам, принимая активное участие в их метаболизме.

Помимо нейронов к нервной ткани относятся клетки нейроглии – нейроглиоциты . Они были открыты в XIX в. немецким цитологом Р.Вирховым, который определил их, как клетки, соединяющие нейроны (греч. glia – клей), заполняющие пространства между ними. В дальнейшем было выявлено, что нейроглиоциты – очень обширная группа клеточных элементов, отличающихся своими строением, происхождением и выполняемыми функциями. Стало понятно, что нейроглия функционирует в мозгу не только как трофическая (питающая) или опорная ткань. Глиальные клетки принимают также участие и в специфических нервных процессах, активно влияя на деятельность нейронов.

Клетки нейроглии имеют ряд общих черт строения с нейронами. Так, в цитоплазме глиоцитов найден тигроид (вещество Ниссля), глиальные клетки, как и нейроны, имеют отростки.

Вместе с тем, глиоциты значительно меньше по размеру, чем нейроны (в 3-4 раза), и их в 5-10 раз больше, чем нервных клеток. Отростки глиальных клеток не дифференцированы ни по строению, ни по функциям. Глиальные клетки сохраняют способность к делению в течение всей жизни организма. Благодаря этой особенности они (когда такое деление приобретает патологический характер) могут являться основой образования опухолей – глиом в нервной системе. Увеличение массы мозга после рождения также идет, в первую очередь, за счет деления и развития клеток нейроглии.

Выделяют несколько типов глиальных клеток. Основные из них – это астроциты, олигодендроциты, эпендимоциты и микроглия (рис. 10). К глиоцитам относят также клетки, находящиеся в периферической нервной системе – шванновские клетки (леммоциты) и клетки-сателлиты в нервных ганглиях.

Эпендимная глия . Эпендимоциты образуют одинарный слой клеток эпендиму , которая выстилает полости нервной системы – спинномозговой канал, желудочки головного мозга, мозговой водопровод). Эпендимоциты имеют кубическую или цилиндрическую форму. На ранних стадиях развития у них есть реснички, обращенные в мозговые полости. Они способствуют проталкиванию цереброспинальной жидкости (ликвора). Позже реснички исчезают, сохраняясь лишь в некоторых участках, например в водопроводе.

Клетки эпендимы активно регулируют обмен веществами между мозгом и кровью, с одной стороны, и ликвором и кровью с другой. Например, эпендимоциты, находящиеся в области сосудистых сплетений и покрывающие выпячивания мягкой мозговой оболочки (см. 4.1), принимают участие в фильтрации химических соединений из кровеносных капилляров в ликвор. Некоторые эпендимные клетки имеют длинные цитоплазматические отростки, глубоко вдающиеся в ткань мозга. У таких эпендимоцитов в III желудочке (полости промежуточного мозга) отростки заканчиваются пластинчатым расширением на кровеносных капиллярах гипофиза. В этом случае эпендимоциты участвуют в транспорте веществ из ликвора в кровеносную сеть гипофиза.

Астроцитарная глия. Астроциты расположены во всех отделах нервной системы. Это самые крупные и многочисленные из глиальных клеток. Имеется две разновидности астроцитов – волокнистые (фиброзные) и протоплазматические. Волокнистые астроциты имеют длинные прямые неветвящиеся отростки. Эти клетки расположены главным образом в белом веществе между волокнами. У протоплазматических астроцитов много коротких сильно ветвящихся отростков, и они в основном лежат в сером веществе.

Функции астроцитов очень разнообразны. Они заполняют пространство между телами нейронов и их волокнами, выполняя таким образом опорную и изолирующую функции. Во время эмбрионального развития вдоль отростков астроцитов осуществляется движение нейронов. Астроциты также образуют рубец при разрушении нервной ткани.

Астроциты активно участвуют в метаболизме нервной системы. Они регулируют водно-солевой обмен, являясь своеобразной губкой, которая поглощает избыточную воду и быстро ее отдает. При оттоке воды из нервной системы объем астроцитов резко уменьшается. Явления отека мозга часто связаны с изменением структуры этих клеток. Астроциты могут, кроме того, регулировать концентрацию ионов в межклеточной среде. Например, при быстром выделении туда ионов К + при генерации потенциала действия, часть калия поглощается астроцитарной глией. Участвуют астроциты также в метаболизме нейромедиаторов, которые они могут захватывать из синаптической щели. В целом можно сказать, что этот вид нейроглии поддерживает постоянство межклеточной среды мозга.

Еще одна функция астроцитов состоит в том, что они принимают участие в работе гемато-энцефалического барьера (ГЭБ) – барьера между кровью (греч. haimatos , кровь) и мозгом. ГЭБ – сложная анатомическая, физиологическая и биохимическая система, от которой зависит, какие вещества и с какой скоростью проникают в ЦНС из крови. Существование ГЭБ связано с тем, что нейроны очень чувствительны к воздействию на них различных химических соединений, а если нейрон погибает, то его уже не может заменить новая клетка. ГЭБ возникает, в первую очередь, благодаря особенностям стенок капилляров, проницаемость которых в нервной системе гораздо ниже, чем в других частях организма. Кроме того, между капиллярами и нейронами находится слой астроцитов, которые образуют специальные выросты – ножки, обхватывающие наподобие манжеты кровеносный капилляр. Таким образом астроциты могут задерживать часть вредных веществ, пытающихся проникнуть из крови в мозг.

Благодаря ГЭБ проникновение химических веществ из крови в нервную ткань очень ограничено. ГЭБ не пропускает к нейронам целый ряд соединений – в первую очередь, это токсины (яды, вырабатываемые микроорганизмами, растениями и животными) и отходы обмена веществ. ГЭБ не пропускает и некоторые вещества, поступающие с пищей, если они могут оказывать вредное влияние на нервную систему. Он же ограничивает прохождение в мозг некоторых лечебных препаратов. В связи с этим фармакологи при разработке новых лекарств обращают специальное внимание на создание молекул, которые могли бы преодолевать ГЭБ. Нарушения в работе ГЭБ могут привести к различным заболеваниям. Например, при повышении температуры тела нарушаются контакты между глиальными ножками и кровеносным сосудом, что повышает вероятность проникновения инфекционных агентов в мозг.

Олигодендроглия. Олигоде ндроцитыгораздо мельче, чем астроциты. Их отростки немногочисленны. Эти клетки находятся и в сером, и в белом веществе, являясь спутниками нейронов и нервных волокон.

Также как и астроциты олигодендроциты выполняют трофическую функцию, и ряд питательных веществ поступает к нейронам через них. Предполагается, что олигодендроциты участвуют в регенерации нервных волокон. Но у олигодендроглии есть и специфическая функция: при помощи этих клеток образуются оболочки вокруг нервных волокон (см. выше). В безмиелиновых волокнах цепочки олигодендроцитов расположены вдоль всего волокна. Отдельные клетки обхватывают небольшие участки волокна, изолируя его от других волокон. Это способствует тому, что нервный импульс проводится по каждому волокну изолированно, не влияя на процессы, происходящие в соседних волокнах.

В периферической нервной системе аналогами олигодендроцитов являются шванновские клетки , которые также образуют оболочки (как миелиновые, так и безмиелиновые) вокруг волокон.

Микроглия . Микроглиоциты самые мелкие из глиальных клеток. Основная их функция – защитная. Они являются фагоцитами нервной системы, за что их называют еще глиальными макрофагами. Количество этих клеток очень варьирует в зависимости от функционального состояния нервной системы. При различных экзо- и эндогенных вредных влияниях (травма, воспаление и т.п.) они резко увеличиваются в размерах, начинают делиться и устремляются в очаг поражения. Здесь микроглиоциты устраняют чужеродные клетки, например, бактерии, и разного рода тканевые остатки путем фагоцитоза.

Клетки микроглии играют важную роль в развитии поражений нервной системы при СПИДе. Вместе с клетками крови они разносят вирус иммунодефицита по ЦНС.

И защищает их. Являются вспомогательными клетками системы, но активно участвует в ее деятельности.

К функциям нейроглии относится защита нейронов и их капилляров, секреторная деятельность, участие в метаболизме и клеточном питании. По сути дела, нейроглия является средой, которая формирует условия для работы нейронов.

Виды и подвиды, функции глиальных клеток

Глии имеют следующие типы:

  1. Макроглию или глиоциты.
  2. Микроглию или глиальные макрофаги.

Глиоциты

К глиоцитам относятся:

  • эпендимоциты;
  • астроциты;

Эпендимоциты образуют защитный слой клеток, прежде всего, в канале , а также . Эти элементы органической субстанции образуются первыми в нервных трубках и на начальной стадии имеют функции опоры и разграничения.

Данные клетки снабжены небольшими ответвлениями в виде ресничек, которые помогают движению церебральной жидкости. По мере развития организма реснички теряются, оставаясь только на отдельных участках. На поверхности нервных волокон эпендимоциты формируют мембрану, которая отделяет ЦНС от других тканей организма.

Астроциты представляют из себя клетки с отростками, они похожи на изображение звезды. Бывают двух типов: протоплазматических и волокнистых (фиброзных).

Протоплазматические астроциты имеются исключительно в сером веществе мозговых тканей. Отростки у них короткие, но толстые, и обладают ответвлениями на концах. Имеют своей задачей разграничение и участие в обмене веществ.

Волокнистые астроциты составляют основу глии в белом веществе. Отростки у них длинные, благодаря им формируются волокна, поддерживающие мозговой аппарат. Концы этих видов астроцитов образуют пограничные мембраны. Кроме защиты нейронов, волокнистые астроциты обеспечивают метаболизм и питание клеток. Астроглия является одной из важнейших тканей, формирующих среду для функционирования головного мозга.

Самой большой группой глиоцитов являются олигодендроциты. Эта группа окружает нейроны как в центральной нервной системе, так и в периферической. Вырабатывая миелин, создает электроизолирующую оболочку.

При помощи олигодендроцитов происходит обмен воды и солей в клеточных образованиях, а также процессы разрушения и восстановления. Защитная и трофическая деятельность этих групп формирует поддержку для нейронов и доставляет им необходимое питание.

Микроглия

Микроглия представляет из себя сообщество клеток небольшого размера, с двумя-тремя отростками. На концах отростков выделяются небольшие разветвления. Клетки микроглии имеют способность к небольшим движениям по типу амёб.

В отличии от ядер клеток макроглии, которые имеют круглую или овальную формы, у микроглии они вытянутой или треугольной формы. При раздражении клетки способны втягивать отростки внутрь и округлять свою форму. В таком виде их называют зернистыми шарами.

Одним из свойств микроглии является участие в синтезе белков. Но основная функция – защита нейронов от попадания субстанций, способных нарушить деятельность нервной системы. Микроглия выполняет роль макрофагов, поглощая и разлагая все вредные вещества.

Таким образом, строение и функции нейроглии заключаются в следующем:

Нейроглия не выполняет проводящих функций и не распространяет нервный сигнал, за это отвечают нейроны.

Для измерения количества разных видов ткани в нервной системе применяют нейроглиальный коэффициент.

Нейролиальный коэффициент — это процентное соотношение нейроглии и нейронов в центральной нервной системе. Так как нейроглия формирует среду для работы нейронов, то ее клеточный материал доминирует в системе и составляет до 90% всей массы.

Патологии

Центральная нервная система, как и любая другая ткань организма, может подвергаться повреждениям. Нейроглия испытывает патологические воздействия в первую очередь. Защитные функции позволяют принять удар на себя.

Все вирусы, способные воздействовать на нервную систему, начинают деятельность с изменения глии. В результате клетки дают доброкачественные новообразования, формируют кисты в спинном и головном мозге.