Числовые ряды. Достаточные признаки их сходимости. Ряды для чайников. Примеры решений Примеры применения признаков сходимости числового ряда

В данной теме рассмотрим некие критерии, с помощью которых можно сделать выбор между необходимым признаком сходимости ряда, признаками Д"Аламбера и Коши, а также признаками сравнения. Напомню, что признаки сравнения, а также интегральный и радикальный признаки Коши применяются лишь для положительных числовых рядов (т.е. рядов, общий член которых не меньше нуля, $u_n≥ 0$). Признак Д"Аламбера применяется для строго положительных рядов ($u_n > 0$).

Выбор признака, с помощью которого можно проверить сходимость числового ряда, - в общем случае задача непростая. Однако для тех рядов, которые используются в стандартных типовых расчётах и контрольных работах, можно дать некие общие рекомендации. Эти рекомендации я запишу в таблицу.

Пару слов насчёт самой таблицы. Второй столбец описывает сферу применения того или иного признака сходимости в большинстве стандартных контрольных работ. Третий столбец иллюстрирует информацию второго столбца наглядными примерами (все эти примеры решены в соответствующих темах). Четвёртый столбец содержит примеры рядов, которые несколько выбиваются из общей схемы или же встречаются в стандартных контрольных работах не так уж часто.

Название Основное применение Примеры рядов Дополнительное применение
Необходимый признак сходимости Общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Или же могут присутствовать корни от многочленов. С помощью необходимого условия сходимости можно доказать расходимость произвольного числового ряда (не обязательно положительного). $\sum\limits_{n=1}^{\infty}\frac{3n^2+2n-1}{5n^2+7}$, $\sum\limits_{n=1}^{\infty}\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$. $\sum\limits_{n=1}^{\infty}\left(5^n\sin\frac{8}{3^n}\right)$, $\sum\limits_{n=1}^{\infty}\frac{3^n}{n^2}$, $\sum\limits_{n=1}^{\infty}\left(\frac{2n+7}{2n+3}\right)^{9n+1}$, $\sum\limits_{n=1}^{\infty}\sin n$, $\sum\limits_{n=1}^{\infty}\frac{1-\cos\frac{1}{n}}{\ln\left(1+\frac{1}{n^2}\right)}$, $\sum\limits_{n=1}^{\infty}(-1)^n\frac{17n^5+4\cos(n!)}{6n^5+2n^2-1}$.
Признаки сравнения Общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Или же вместо многочленов (или вместе с ними) могут присутствовать корни от многочленов. Для рядов такого вида приходится выбирать между необходимым признаком сходимости и признаками сравнения. Общий член ряда может содержать не только многочлен, но и некий "отвлекающий элемент", который не влияет на сходимость. Иногда, чтобы увидеть ряд для сравнения, приходится использовать эвивалентные бесконечно малые функции. $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$, $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$, $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$, $\sum\limits_{n=1}^{\infty}\frac{\arcsin\frac{7n-1}{9n}}{\sqrt{4n^2-3}}$, $\sum\limits_{n=1}^{\infty}\frac{\arctg^2\sqrt{2n^3-1}}{\sqrt{3n^5-2}}$, $\sum\limits_{n=1}^{\infty}\frac{1}{n}\sin\left(\frac{2+(-1)^n}{6}\cdot\pi\right)$, $\sum\limits_{n=1}^{\infty}\frac{2^{3n}+\cos n!}{5^{2n+1}-n}$, $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}\arctg\frac{\pi}{\sqrt{2n-1}}$, $\sum\limits_{n=1}^{\infty}\left(1-\cos\frac{7}{n}\right)$, $\sum\limits_{n=1}^{\infty}n\left(e^\frac{3}{n}-1\right)^2$, $\sum\limits_{n=1}^{\infty}\ln\frac{n^3+7}{n^3+5}$. $\sum\limits_{n=1}^{\infty}\left(\sqrt{2n+3}-\sqrt{2n-1}\right)$, $\sum\limits_{n=1}^{\infty}\frac{n^n}{7^n\cdot n!}$.
Признак Д"Аламбера В выражении общего члена ряда присутствуют многочлен (многочлен может быть и под корнем) и степень вида $a^n$ или $n!$. Или же общий член ряда содержит произведение такого вида: $3\cdot 5\cdot 7\cdot\ldots\cdot(2n+1)$. $\sum\limits_{n=1}^{\infty}\frac{5^n\cdot(3n+7)}{2n^3-1}$, $\sum\limits_{n=1}^{\infty}\frac{\sqrt{4n+5}}{(3n-2)!}$, $\sum\limits_{n=1}^{\infty}\frac{(2n+5)!}{4^{3n+2}}$, $\sum\limits_{n=1}^{\infty}\frac{n^n}{3^n\cdot n!}$, $\sum\limits_{n=1}^{\infty}\frac{6^{2n+5}\left(3n^2-1\right)}{(n+3)!}$, $\sum\limits_{n=1}^{\infty}\frac{3\cdot 5\cdot 7\cdot\ldots\cdot(2n+1)}{2\cdot 5\cdot 8\cdot\ldots\cdot(3n-1)}$, $\sum\limits_{n=1}^{\infty}\frac{1\cdot 11\cdot 21\cdot\ldots\cdot(10n-9)}{(2n-1)!!}$. $\sum\limits_{n=1}^{\infty}\frac{4n-1}{n}\sin\frac{2}{3^n}$, $\sum\limits_{n=1}^{\infty}\frac{3^{2n+1}-4}{2^{5n}(n+1)!}$, $\sum\limits_{n=1}^{\infty}\frac{\left(n!\right)^2}{2^{n^2}}$.
Радикальный признак Коши В выражении общего члена ряда все элементы возведены в степень, которую можно сократить на $n$. $\sum\limits_{n=1}^{\infty}\left(\frac{3n^2-1}{5n^2+7n}\right)^{2n}$, $\sum\limits_{n=1}^{\infty}\left(\frac{2n+3}{7n-5}\right)^{n^2}$, $\sum\limits_{n=1}^{\infty}\left(\frac{2n+1}{2n-1}\right)^{n(3n+4)}$, $\sum\limits_{n=1}^{\infty}\frac{(5n+4)^n}{7^{2n}\cdot n^n}$, $\sum\limits_{n=1}^{\infty}\left(\sin\frac{4}{n^2+2n}\right)^{\frac{n}{2}}$. $\sum\limits_{n=1}^{\infty}\frac{\left(3n^2+7\right)\cdot 5^{2n-1}}{4^n}$, $\sum\limits_{n=1}^{\infty}\frac{n^n}{7^n\cdot n!}$.

ВВЕДЕНИЕ

Методическое пособие предназначено для преподавателей математики в техникумах, а также для студентов второго курса, всех специальностей.

В данной работе излагаются основные понятия теории рядов. Теоретический материал соответствует требованиям Государственного образовательного стандарта среднего профессионального образования (Министерство образования Российской Федерации. М., 2002г.).

Изложение теоретического материала по всей теме сопровождается рассмотрением большого количества примеров и задач, ведется на доступном, по-возможности строгом языке. В конце пособия приведены примеры и задания, которые студенты могут выполнять в режиме самоконтроля.

Пособие предназначено для студентов заочной и дневной форм обучения.

Учитывая уровень подготовки учащихся техникума, а также крайне ограниченное число часов (12 часов + 4 ф.), отводимое программой для прохождения высшей математики в техникумах, строгие выводы, представляющие большие трудности для усвоения, опущены, ограничиваясь рассмотрением примеров.

ОСНОВНЫЕ ПОНЯТИЯ

Решение задачи, представленной в математических терминах, например, в виде комбинации различных функций, их производных и интегралов, нужно уметь “довести до числа”, которое чаще всего и служит окончательным ответом. Для этого в различных разделах математики выработаны различные методы.

Раздел математики, позволяющий решить любую корректно поставленную задачу с достаточной для практического использования точностью, называется теорией рядов.

Даже если некоторые тонкие понятия математического анализа появились вне связи с теорией рядов, они немедленно применялись к рядам, которые служили как бы инструментом для испытания значимости этих понятий. Такое положение сохраняется и сейчас.

Выражение вида

где ;;;…;;… - члены ряда; - n-ый или общий член ряда, называется бесконечным рядом (рядом).

Если члены ряда:

I. Числовой ряд

1.1. Основные понятия числового ряда.

Числовым рядом называется сумма вида

, (1.1)

где ,,,…,,…, называемые членами ряда, образуют бесконечную последовательность; членназывается общим членом ряда.

составленные из первых членов ряда (1.1), называются частичными суммами этого ряда.

Каждому ряду можно сопоставить последовательность частичных сумм .

Если при бесконечном возрастании номера n частичная сумма ряда стремится к пределу, то ряд называется сходящимся, а число - суммой сходящегося ряда, т.е.

Эта запись равносильна записи

.

Если частичная сумма ряда (1.1) при неограниченном возрастании n не имеет конечного предела (стремится к или ), то такой ряд называется расходящимся .

Если ряд сходящийся , то значение при достаточно большом n является приближенным выражением суммы ряда S .

Разность называется остатком ряда. Если ряд сходится, то его остаток стремится к нулю, т.е., и наоборот, если остаток стремится к нулю, то ряд сходится.

1.2. Примеры числовых рядов.

Пример 1. Ряд вида

(1.2)

называется геометрическим .

Геометрический ряд образован из членов геометрической прогрессии.

Известно, что сумма её первых n членов . Очевидно: это n- ая частичная сумма ряда (1.2).

Возможны случаи:

Ряд (1.2) принимает вид:

,ряд расходится;

Ряд (1.2) принимает вид:

Не имеет предела, ряд расходится.

- конечное число, ряд сходится.

- ряд расходится.

Итак, данный ряд сходится при и расходится при .

Пример 2. Ряд вида

(1.3)

называется гармоническим .

Запишем частичную сумму этого ряда:

Сумма больше суммы, представленной следующим образом:

или .

Если , то , или .

Следовательно, если , то , т.е. гармонический ряд расходится.

Пример 3. Ряд вида

(1.4)

называется обобщенным гармоническим .

Если , то данный ряд обращается в гармонический ряд, который является расходящимся.

Если , то члены данного ряда больше соответствующих членов гармонического ряда и, значит, он расходится. При имеем геометрический ряд, в котором ; он является сходящимся.

Итак, обобщенный гармонический ряд сходится при и расходится при .

1.3. Необходимый и достаточные признаки сходимости.

Необходимый признак сходимости ряда.

Ряд может сходиться только при условии, что его общий член при неограниченном увеличении номера стремится к нулю: .

Если , то ряд расходится – это достаточный признак расходимости ряда.

Достаточные признаки сходимости ряда с положительными членами.

Признак сравнения рядов с положительными членами.

Исследуемый ряд сходится, если его члены не превосходят соответствующих членов другого, заведомо сходящегося ряда; исследуемый ряд расходится, если его члены превосходят соответствующие члены другого, заведомо расходящегося ряда.

Признак Даламбера.

Если для ряда с положительными членами

выполняется условие , то ряд сходится при и расходится при .

Признак Даламбера не дает ответа, если . В этом случае для исследования ряда применяются другие приемы.

Упражнения.

Записать ряд по его заданному общему члену:

Полагая ,,,…, имеем бесконечную последовательность чисел:

Сложив его члены, получим ряд

.

Поступая так же, получим ряд

.

Придаваязначения 1,2,3,… и учитывая, что,,,…, получим ряд

.

Найти n- ый член ряда по его данным первым членам:

Знаменатели членов ряда, начиная с первого, являются четными числами; следовательно, n- ый член ряда имеет вид .

Числители членов ряда образуют натуральный ряд чисел, а соответствующие им знаменатели – натуральный ряд чисел, а соответствующие им знаменатели – натуральный ряд чисел, начиная с 3. Знаки чередуются по закону или по закону . Значит, n- й член ряда имеет вид . или .

Исследовать сходимость ряда, применяя необходимый признак сходимости и признак сравнения:

;

.

Находим .

Необходимый признак сходимости ряда выполняется, но для решения вопроса о сходимости нужно применить один из достаточных признаков сходимости. Сравним данный ряд с геометрическим рядом

,

который сходится, так как.

Сравнивая члены данного ряда, начиная со второго, с соответствующими членами геометрического ряда, получим неравенства

т.е. члены данного ряда, начиная со второго, соответственно меньше членов геометрического ряда, откуда следует, что данный ряд сходится.

.

Здесь выполняется достаточный признак расходимости ряда; следовательно, ряд расходится.

Находим .

Необходимый признак сходимости ряда выполняется. Сравним данный ряд с обобщенным гармоническим рядом

,

который сходится, поскольку, следовательно, сходится и данный ряд.

Исследовать сходимость ряда, используя признак Даламбера:

;

.

Подставив в общий член ряда вместо n число n+ 1, получим . Найдем предел отношения -го члена к n- му члену при :

Следовательно, данный ряд сходится.

Значит, данный ряд расходится.

Т.е. ряд расходится.

II. Знакопеременный ряд

2.1 Понятие знакопеременного ряда.

Числовой ряд

называется знакопеременным , если среди его членов имеются как положительные, так и отрицательные числа.

Числовой ряд называется знакочередующимся , если любые два стоящие рядом члена имеют противоположные знаки.

где для всех (т.е. ряд, положительные и отрицательные члены которого следуют друг за другом поочередно). Например,

;

;

.

Для знакочередующихся рядов имеет место достаточный признак сходимости (установленный в 1714г. Лейбницем в письме к И.Бернулли).

2.2 Признак Лейбница. Абсолютная и условная сходимость ряда.

Теорема (Признак Лейбница).

Знакочередующийся ряд сходится, если:

Последовательность абсолютных величин членов ряда монотонно убывает, т.е. ;

Общий член ряда стремится к нулю:.

При этом сумма S ряда удовлетворяет неравенствам

Замечания.

Исследование знакочередующегося ряда вида

(с отрицательным первым членом) сводится путем умножения всех его членов на к исследованию ряда .

Ряды, для которых выполняются условия теоремы Лейбница, называются лейбницевскими (или рядами Лейбница).

Соотношение позволяет получить простую и удобную оценку ошибки, которую мы допускаем, заменяя сумму S данного ряда его частичной суммой .

Отброшенный ряд (остаток) представляет собой также знакочередующийся ряд , сумма которого по модулю меньше первого члена этого ряда, т.е.. Поэтому ошибка меньше модуля первого из отброшенных членов.

Пример. Вычислить приблизительно сумму ряда .

Решение: данный ряд Лейбницевского типа. Он сходится. Можно записать:

.

Взяв пять членов, т.е. заменивна

Сделаем ошибку, меньшую,

чем. Итак,.

Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости.

Теорема. Пусть дан знакопеременный ряд

Если сходится ряд

составленный из модулей членов данного ряда, то сходится и сам знакопеременный ряд.

Признак сходимости Лейбница для знакочередующихся рядов служит достаточным признаком сходимости знакочередующихся рядов.

Знакопеременный ряд называется абсолютно сходящимся , если сходится ряд, составленный из абсолютных величин его членов, т.е. всякий абсолютно сходящийся ряд является сходящимся.

Если знакопеременный ряд сходится, а составленный из абсолютных величин его членов ряд расходится, то данный ряд называется условно (неабсолютно) сходящимся.

2.3. Упражнения.

Исследовать на сходимость (абсолютную или условную) знакочередующийся ряд:

и

Следовательно, согласно признаку Лейбница, ряд сходится. Выясним, сходится ли этот ряд абсолютно или условно.

Ряд , составленный из абсолютных величин данного ряда, является гармоническим рядом, который, расходится. Поэтому данный ряд сходится условно.

Члены данного ряда по абсолютной величине монотонно убывают:

, но

.

Ряд расходится, так как признак Лейбница не выполняется.

Используя признак Лейбница, получим

;,

т.е. ряд сходится.

.

Это геометрический ряд вида, где, который сходится. Поэтому данный ряд сходится абсолютно.

Используя признак Лейбница, имеем

;

, т.е. ряд сходится.

Рассмотрим ряд, составленный из абсолютных величин членов данного ряда:

, или

.

Это обобщенный гармонический ряд, который расходится, так как. Следовательно, данный ряд сходится условно.

III. Функциональный ряд

3.1. Понятие функционального ряда.

Ряд, членами которого являются функции от , называется функциональным :

Придавая определенное значение , получим числовой ряд

который может быть как сходящимся, так и расходящимся.

Если полученный числовой ряд сходится, то точка называется точкой сходимости функционального ряда; если же ряд расходится – точкой расходимости функционального ряда.

Совокупность числовых значений аргумента , при которых функциональный ряд сходится, называется его областью сходимости .

В области сходимости функционального ряда его сумма является некоторой функцией от :.

Определяется она в области сходимости равенством

, где

Частичная сумма ряда.

Пример. Найти область сходимости ряда .

Решение. Данный ряд является рядом геометрической прогрессии со знаменателем . Следовательно, этот ряд сходится при , т.е. при всех ; сумма ряда равна ;

, при .

3.2. Степенные ряды.

Степенным рядом называется ряд вида

,

где числа называются коэффициентами ряда , а член - общим членом ряда.

Областью сходимости степенного ряда называется множество всех значений , при которых данный ряд сходится.

Число называется радиусом сходимости степенного ряда, если при ряд сходится и притом абсолютно, а при ряд расходится.

Радиус сходимости найдем, используя признак Даламбера:

(не зависит от),

т.е. если степенной ряд сходится при любых , удовлетворяющих данному условию и расходится при .

Отсюда следует, что если существует предел

,

то радиус сходимости рядаравен этому пределу и степенной ряд сходится при , т.е. в промежутке , который называется промежутком (интервалом) сходимости.

Если , то степенной ряд сходится в единственной точке .

На концах промежутка ряд может сходиться (абсолютно или условно), но может и расходиться.

Сходимость степенного ряда при и исследуется с помощью какого-либо из признаков сходимости.

3.3. Упражнения.

Найти область сходимости ряда:

Решение. Найдем радиус сходимости данного ряда:

.

Следовательно, данный ряд абсолютно сходится на всей числовой оси.

Решение. Воспользуемся признаком Даламбера. Для данного ряда имеем:

.

Ряд абсолютно сходится, если или . Исследуем поведение ряда на концах интервала сходимости.

При имеем ряд

При имеем ряд- это тоже сходящийся Лейбницевский ряд. Следовательно, областью сходимости исходного ряда является отрезок.

Решение. Найдем радиус сходимости ряда:

Следовательно, ряд сходится при, т.е. при.

Приимеем ряд, который сходится по признаку Лейбница.

Приимеем расходящийся ряд

.

Следовательно, областью сходимости исходного ряда является промежуток.

IV. Разложение элементарных функций в ряд Маклорена.

Для приложений важно уметь данную функцию разлагать в степенной ряд, т.е. функцию представлять в виде суммы степенного ряда.

Рядом Тейлора для функции называется степенной ряд вида

Если , то получим частный случай ряда Тейлора

который называется рядом Маклорена .

Степенной ряд внутри его промежутка сходимости можно почленно дифференцировать и интегрировать сколько угодно раз, причем полученные ряды имеют тот же промежуток сходимости, что и исходный ряд.

Два степенных ряда можно почленно складывать и умножать по правилам сложения и умножения многочленов. При этом промежуток сходимости полученного нового ряда совпадает с общей частью промежутков сходимости исходных рядов.

Для разложения функции в ряд Маклорена необходимо:

Вычислить значения функции и ее последовательных производных в точке , т.е.,,,…,;

Составить ряд Маклорена, подставив значения функции и ее последовательных производных в формулу ряда Маклорена;

Найти промежуток сходимости полученного ряда по формуле

, .

Пример 1. Разложить в ряд Маклорена функцию.

Решение. Так как , то, заменяя на в разложении , получим:

Пример 2. Выписать ряд Маклорена функции .

Решение. Так как , то воспользовавшись формулой , в которой заменим на , получим:

,

Пример 3. Разложить в ряд Маклорена функцию .

Решение. Воспользуемся формулой . Так как

, то заменивнаполучим:

, или

где , т.е. .

V. Практические задания для самоконтроля студентов.

При помощи признака сравнения рядов установить сходимость

  • cходится условно;
  • cходится условно;
  • cходится абсолютно.
  • ;

    ;

    VII. Историческая справка.

    Решение многих задач сводится к вычислению значений функций и интегралов или к решению дифференциальных уравнений, содержащих производные или дифференциалы неизвестных функций.

    Однако точное выполнение указанных математических операций во многих случаях оказывается весьма затруднительным или невозможным. В этих случаях можно получить приближенное решение многих задач с любой желаемой точностью при помощи рядов.

    Ряды представляют собой простой и совершенный инструмент математического анализа для приближенного вычисления функций, интегралов и решений дифференциальных уравнений.

    И стоящим справа функциональным рядом.

    Для того, чтобы вместо знака “” можно было поставить знак равенства, необходимо провести некоторые дополнительные рассуждения, связанные именно с бесконечностью числа слагаемых в правой части равенства и касающиеся области сходимости ряда.

    При формула Тейлора принимает вид, в котором называется формулой Маклорена:

    Колин Маклорен (1698 – 1746), ученик Ньютона, в работе “Трактат о флюксиях” (1742) установил, что степенной ряд, выражающий аналитическую функцию, - единственный, и это будет ряд Тейлора, порожденный такой функцией. В формуле бинома Ньютона коэффициенты при степенях представляют собой значения , где .

    Итак, ряды возникли в XVIII в. как способ представления функций, допускающих бесконечное дифференцирование. Однако функция, представляемая рядом, не называлась его суммой, и вообще в то время не было еще определено, что такое сумма числового или функционального ряда, были только попытки ввести это понятие.

    Например, Л. Эйлер (1707-1783), выписав для функции соответствующий ей степенной ряд, придавал переменной конкретное значение . Получался числовой ряд. Суммой этого ряда Эйлер cчитал значение исходной функции в точке . Но это не всегда верно.

    О том, что расходящийся ряд не имеет суммы, ученые стали догадываться только в XIX в., хотя в XVIII в. многие, и прежде всего Л. Эйлер, много работали над понятиями сходимости и расходимости. Эйлер называл ряд сходящимся, если его общий член стремится к нулю при возрастании .

    В теории расходящихся рядов Эйлер получил немало существенных результатов, однако результаты эти долго не находили применения. Еще в 1826г. Н.Г. Абель (1802 – 1829) называл расходящиеся ряды “дьявольским измышлением”. Результаты Эйлера нашли обоснование лишь в конце XIX в.

    В формировании понятия суммы сходящегося ряда большую роль сыграл французский ученый О.Л. Коши (1789 – 1857); он сделал чрезвычайно много не только в теории рядов, но и теории пределов, в разработке самого понятия предела. В 1826г. Коши заявил, что расходящийся ряд не имеет суммы.

    В 1768г. французский математик и философ Ж.Л. Д’Аламбер исследовал отношение последующего члена к предыдущему в биномиальном ряде и показал, что если это отношение по модулю меньше единицы, то ряд сходится. Коши в 1821г. доказал теорему, излагающую в общем виде признак сходимости знакоположительных рядов, называемых теперь признаком Д’Аламбера.

    Для исследования сходимости знакочередующихся рядов используется признак Лейбница.

    Г.В. Лейбниц (1646 – 1716), великий немецкий математик и философ, наряду с И. Ньютоном является основоположником дифференциального и интегрального исчисления.

    Список литературы:

    Основная:

    1. Богомолов Н.В., Практические занятия по математике. М., “Высшая школа”, 1990 – 495 с.;
    2. Тарасов Н.П., Курс высшей математики для техникумов. М., “Наука”, 1971 – 448 с.;
    3. Зайцев И.Л., Курс высшей математики для техникумов. М., государственное издательство техникумов – теоретической литературы, 1957 - 339 с.;
    4. Письменный Д.Т., Курс лекций по высшей математике. М., “Айрис Пресс”, 2005, часть 2 – 256 с.;
    5. Выгодский М.Я., Справочник по высшей математике. М., “Наука”, 1975 – 872 с.;

    Дополнительная:

    1. Гусак А.А., Высшая математика. В 2-х т., Т.2: Учебное пособие для студентов вузов. Мос., “ТетраСистемс”, 1988 – 448 с.;
    2. Григулецкий В.Г., Лукьянова И.В., Петунина И.А., Математика для студентов экономических специальностей. Часть 2. Краснодар, 2002 – 348 с.;
    3. Григулецкий В.Г. и др. Задачник-практикум по математике. Краснодар. КГАУ, 2003 – 170 с.;
    4. Григулецкий В.Г., Степанцова К.Г., Гетман В.Н., Задачи и упражнения для студентов учетно-финансового факультета. Краснодар. 2001 – 173 с.;
    5. Григулецкий В.Г., Ященко З.В., Высшая математика. Краснодар, 1998 – 186 с.;
    6. Малыхин В.И., Математика в экономике. М., “Инфра-М”, 1999 – 356с.

    Перед началом работы с этой темой советую посмотреть раздел с терминологией для числовых рядов. Особенно стоит обратить внимание на понятие общего члена ряда. Если у вас есть сомнения в правильности выбора признака сходимости, советую глянуть тему "Выбор признака сходимости числовых рядов" .

    Необходимый признак сходимости числовых рядов имеет простую формулировку: общий член сходящегося ряда стремится к нулю. Можно записать этот признак и более формально:

    Если ряд $\sum\limits_{n=1}^{\infty}u_n$ сходится, то $\lim_{n\to\infty}u_n=0$.

    Часто в литературе вместо словосочетания "необходимый признак сходимости" пишут "необходимое условие сходимости". Однако перейдём к сути: что означает данный признак? А означает он следующее: если $\lim_{n\to\infty}u_n=0$, то ряд может сходиться. Если же $\lim_{n\to\infty}u_n\neq 0$ (или же предела попросту не существует), то ряд $\sum\limits_{n=1}^{\infty}u_n$ расходится.

    Стоит обратить внимание, что равенство $\lim_{n\to\infty}u_n=0$ вовсе не означает сходимости ряда. Ряд может как сходиться, так и расходиться. А вот если $\lim_{n\to\infty}u_n\neq 0$, то ряд гарантированно расходится. Если эти нюансы требуют детальных пояснений, то прошу раскрыть примечание.

    Что означает словосочетание "необходимое условие"? показать\скрыть

    Поясним понятие необходимого условия на примере. Для покупки ручки студенту необходимо иметь 10 рублей. Это можно записать так: если студент покупает ручку, то у него есть 10 рублей. Наличие десяти рублей - это и есть необходимое условие покупки ручки.

    Пусть это условие выполнено, т.е. десятка у студента есть. Значит ли это, что он купит ручку? Вовсе нет. Он может купить ручку, а может приберечь деньги на потом. Или купить что-либо иное. Или подарить их кому-то, - вариантов масса:) Иными словами, выполнение необходимого условия покупки ручки (т.е. наличие денег) вовсе не гарантирует покупку этой ручки.

    Точно так же и необходимое условие сходимости числового ряда $\lim_{n\to\infty}u_n=0$ вовсе не гарантирует сходимость этого самого ряда. Простая аналогия: если есть деньги, студент может купить ручку, а может и не купить. Если $\lim_{n\to\infty}u_n=0$, ряд может как сходиться, так и расходиться.

    Однако что произойдет, если необходимое условие покупки ручки не выполнено, т.е. денег нет? Тогда студент ручку точно не купит. То же самое и с рядами: если необходимое условие сходимости не выполнено, т.е. $\lim_{n\to\infty}u_n\neq 0$, то ряд точно будет расходиться.

    Говоря кратко: если необходимое условие выполнено, то следствие может как произойти, так и не произойти. Однако если необходимое условие не выполнено, то следствие точно не произойдёт.

    Для наглядности приведу пример двух рядов: $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$. Общий член первого ряда $u_n=\frac{1}{n}$ и общий член второго ряда $v_n=\frac{1}{n^2}$ стремятся к нулю, т.е.

    $$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{1}{n}=0;\; \lim_{n\to\infty}v_n=\lim_{n\to\infty}\frac{1}{n^2}=0. $$

    Однако гармонический ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, а ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится. Выполнение необходимого условия сходимости вовсе не гарантирует сходимости ряда.

    Исходя из необходимого условия сходимости ряда можно сформулировать достаточный признак расходимости числового ряда:

    Если $\lim_{n\to\infty}u_n\neq 0$, то ряд $\sum\limits_{n=1}^{\infty}u_n$ расходится.

    Чаще всего в стандартных примерах необходимый признак сходимости проверяется, если общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Например, $u_n=\frac{3n^2+2n-1}{5n^2+7}$ (см. пример №1). Или же могут присутствовать корни от многочленов (см. пример №2). Бывают примеры, которые несколько выбиваются из данной схемы, но для стандартных контрольных работ это редкость (см. примеры во второй части этой темы). Подчеркну главное: с помощью необходимого признака нельзя доказать сходимость ряда. Этот признак используют, когда нужно доказать, что ряд расходится.

    Пример №1

    Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\frac{3n^2+2n-1}{5n^2+7}$.

    Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{3n^2+2n-1}{5n^2+7}$. Найдём предел общего члена ряда:

    $$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{3n^2+2n-1}{5n^2+7}=\left|\frac{\infty}{\infty}\right|= \lim_{n\to\infty}\frac{\frac{3n^2}{n^2}+\frac{2n}{n^2}-\frac{1}{n^2}}{\frac{5n^2}{n^2}+\frac{7}{n^2}}= \lim_{n\to\infty}\frac{3+\frac{2}{n}-\frac{1}{n^2}}{5+\frac{7}{n^2}}=\frac{3+0-0}{5+0}=\frac{3}{5}. $$

    "Предел отношения двух многочленов" . Так как предел общего члена ряда не равен нулю, т.е. $\lim_{n\to\infty}u_n=\frac{3}{5}\neq 0$, то необходимый признак сходимости не выполнен. Следовательно, ряд расходится.

    Решение окончено, однако, полагаю, у читателя возникнет вполне резоннный вопрос: а как мы вообще увидели, что нужно проверить выполнение необходимого условия сходимости? Существует немало признаков сходимости числовых рядов, так почему же взяли именно этот? Данный вопрос совсем не праздный. Но так как ответ на него, возможно, будет интересен не всем читателям, то я скрыл его под примечание.

    Почему мы начали применять именно необходимый признак сходимости? показать\скрыть

    Если говорить нестрого, то вопрос сходимости этого ряда решается ещё до формального исследования. Я не буду касаться такой темы как порядок роста, просто приведу некие общие рассуждения. Давайте посмотрим на общий член ряда $u_n=\frac{3n^2+2n-1}{5n^2+7}$ повнимательнее. Сначала обратимся к числителю. Число (-1), расположенное в числителе, можно отбросить сразу: если $n\to\infty$, то данное число будет пренебрежимо малым по сравнению с остальными слагаемыми.

    Посмотрим на степени $n^2$ и $n$, имеющиеся в числителе. Вопрос: какой элемент ($n^2$ или $n$) будет расти быстрее прочих?

    Ответ здесь прост: наиболее быстро будет увеличивать свои значения именно $n^2$. Например, когда $n=100$, то $n^2=10\;000$. И этот разрыв между $n$ и $n^2$ будет всё больше и больше. Поэтому все слагаемые, кроме тех, что содержат $n^2$, мы мысленно отбросим. После такого "отбрасывания" в числителе останется $3n^2$. А после проведения подобной процедуры для знаменателя, там останется $5n^2$. И дробь $\frac{3n^2+2n-1}{5n^2+7}$ теперь станет такой: $\frac{3n^2}{5n^2}=\frac{3}{5}$. Т.е. на бесконечности общий член явно не будет стремиться к нулю. Осталось лишь показать это формально, что и было сделано выше.

    Частенько в записи общего члена ряда используют такие элементы, как, например, $\sin\alpha$ или $\arctg\alpha$ и тому подобное. Нужно просто помнить, что значения подобных величин не могут выходить за некие числовые границы. Например, каким бы ни было значение $\alpha$, значение $\sin\alpha$ останется в пределах $-1≤\sin\alpha≤ 1$. Т.е., к примеру, мы можем записать, что $-1≤\sin(n!e^n)≤ 1$. А теперь представьте, что в записи общего члена ряда расположено выражение вроде $5n+\sin(n!e^n)$. Сыграет ли синус, который может "колебаться" лишь от -1 до 1, хоть какую-либо значимую роль? Ведь значения $n$ устремляются в бесконечность, а синус не сможет превысить даже единицу! Поэтому при предварительном рассмотрении выражения $5n+\sin(n!e^n)$ синус можно просто отбросить.

    Или, для примера, возьмём арктангенс. Каким бы ни было значение аргумента $\alpha$, значения $\arctg\alpha$ будут удовлетворять неравенству $-\frac{\pi}{2}<\arctg\alpha<\frac{\pi}{2}$. Т.е., например, в выражении вроде $7n^3+\sqrt{9n+100}-6\arctg(5^n+587n^{258})$ можно сразу отбросить арктангенс. Да и $\sqrt{9n+100}$ тоже, оставив при этом лишь $7n^3$.

    Чтобы определить, какие элементы можно "отбрасывать", а какие нет, нужен небольшой навык. Чаще всего вопрос сходимости ряда можно решить ещё до формального исследования. А формальное исследование в стандартных примерах служит лишь подтверждением интуитивно полученного результата.

    Ответ : ряд расходится.

    Пример №2

    Исследовать ряд $\sum\limits_{n=1}^{\infty}\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$ на сходимость.

    Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$. Найдём предел общего члена ряда:

    $$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}=\left|\frac{\infty}{\infty}\right|= \lim_{n\to\infty}\frac{\sqrt{\frac{4n^7}{n^7}+\frac{5n^3}{n^7}-\frac{4}{n^7}}}{\frac{9n^2}{n^{\frac{7}{3}}}-\frac{n}{n^{\frac{7}{3}}}+\frac{12}{n^{\frac{7}{3}}}}= \lim_{n\to\infty}\frac{\sqrt{4+\frac{5}{n^4}-\frac{4}{n^7}}}{\frac{9}{n^\frac{1}{3}}-\frac{1}{n^\frac{4}{3}}+\frac{12}{n^\frac{7}{3}}}=+\infty. $$

    Если метод решения данного предела вызывает вопросы, то советую обратиться к теме "Пределы с иррациональностями. Третья часть" (пример №7). Так как предел общего члена ряда не равен нулю, т.е. $\lim_{n\to\infty}u_n\neq 0$, то необходимый признак сходимости не выполнен. Следовательно, ряд расходится.

    Немного поговорим с позиции интуитивных рассуждений. В принципе, здесь верно всё то же самое, что было сказано в примечании к решению примера №1. Если мысленно "отбросить" все "несущественные" слагаемые в числителе и знаменателе общего члена ряда, то дробь $\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$ примет вид: $\frac{\sqrt{4n^7}}{9n^2}=\frac{n^2\sqrt{4n}}{9n^2}=\frac{\sqrt{4n}}{9}$. Т.е. ещё до формального исследования становится ясным, что при $n\to\infty$ общий член ряда к нулю стремиться не станет. К бесконечности - станет, к нулю - нет. Поэтому остаётся лишь показать это строго, что и было сделано выше.

    Ответ : ряд расходится.

    Пример №3

    Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\left(5^n\sin\frac{8}{3^n}\right)$.

    Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=5^n\sin\frac{8}{3^n}$. Найдём предел общего члена ряда:

    $$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\left(5^n\sin\frac{8}{3^n}\right)=\lim_{n\to\infty}\frac{\sin\frac{8}{3^n}}{\frac{1}{5^n}}=\left|\frac{0}{0}\right|=\left|\begin{aligned}&\frac{8}{3^n}\to 0;\\&\sin\frac{8}{3^n}\sim\frac{8}{3^n}. \end{aligned}\right|=\lim_{n\to\infty}\frac{\frac{8}{3^n}}{\frac{1}{5^n}}=8\cdot\lim_{n\to\infty}\left(\frac{5}{3}\right)^n=+\infty. $$

    Так как предел общего члена ряда не равен нулю, т.е. $\lim_{n\to\infty}u_n\neq 0$, то необходимый признак сходимости не выполнен. Следовательно, ряд расходится.

    Пару слов насчёт тех преобразований, которые были осуществлены при вычислении предела. Выражение $5^n$ было помещено в числитель для того, чтобы выражения и в числителе, и в знаменателе стали бесконечно малыми. Т.е. при $n\to\infty$ имеем: $\sin\frac{8}{3^n}\to 0$ и $\frac{1}{5^n}\to 0$. А если мы имеем отношение бесконечно малых, то смело можем применять формулы, указанные в документе "Эквивалентные бесконечно малые функции" (см. таблицу в конце документа). Согласно одной из таких формул, если $x\to 0$, то $\sin x\sim x$. А у нас и есть как раз такой случай: так как $\frac{8}{3^n}\to 0$, то $\sin\frac{8}{3^n}\sim\frac{8}{3^n}$. Иными словами, мы просто-напросто заменяем выражение $\sin\frac{8}{3^n}$ выражением $\frac{8}{3^n}$.

    Полагаю, может возникнуть вопрос, зачем же мы преобразовывали выражение $5^n\sin\frac{8}{3^n}$ к виду дроби, - ведь замену можно было сделать и без такого преобразования. Ответ тут таков: замену-то сделать можно, но вот правомерна ли она будет? Теорема про эквивалентные бесконечно малые функции даёт недвусмысленное указание, что подобные замены возможны лишь в выражениях вида $\frac{\alpha(x)}{\beta(x)}$ (при этом $\alpha(x)$ и $\beta(x)$ - бесконечно малые), расположенных под знаком предела. Вот мы и преобразовали наше выражение к виду дроби, подогнав его под требования теоремы.

    Ответ : ряд расходится.

    Пример №4

    Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\frac{3^n}{n^2}$.

    Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{3^n}{n^2}$. Вообще-то, вопрос со сходимостью этого ряда легко решается с помощью признака Д"Аламбера . Однако можно применить и необходимый признак сходимости.

    Посмотрим повнимательнее на общий член ряда. В числителе расположено выражение $3^n$, которое с возрастанием $n$ увеличивается гораздо быстрее, нежели расположенный в знаменателе $n^2$. Сравните сами: например, если $n=10$, то $3^n=59049$, а $n^2=100$. И этот разрыв стремительно увеличивается с ростом $n$.

    Вполне логично предположить, что если $n\to\infty$, то $u_n$ не станет стремиться к нулю, т.е. необходимое условие сходимости выполнено не будет. Осталось лишь проверить эту столь правдоподобную гипотезу и вычислить $\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{3^n}{n^2}$. Однако перед вычислением этого предела найдём вспомогательный предел функции $y=\frac{3^x}{x^2}$ при $x\to +\infty$, т.е. вычислим $\lim_{x\to +\infty}\frac{3^x}{x^2}$. Зачем мы это делаем: дело в том, что в выражении $u_n=\frac{3^n}{n^2}$ параметр $n$ принимает лишь натуральные значения ($n=1,2,3,\ldots$), а аргумент $x$ функции $y=\frac{3^x}{x^2}$ принимает действительные значения. При нахождении $\lim_{x\to+\infty}\frac{3^x}{x^2}$ мы можем применить правило Лопиталя:

    $$ \lim_{x\to +\infty}\frac{3^x}{x^2}=\left|\frac{\infty}{\infty}\right|=|\text{применяем правило Лопиталя}|=\lim_{x\to +\infty}\frac{\left(3^x\right)"}{\left(x^2\right)"}=\lim_{x\to +\infty}\frac{3^x\ln 3}{2x}=\\ =\frac{\ln 3}{2}\cdot\lim_{x\to +\infty}\frac{3^x}{x} =\left|\frac{\infty}{\infty}\right|=|\text{применяем правило Лопиталя}|=\frac{\ln 3}{2}\cdot\lim_{x\to +\infty}\frac{\left(3^x\right)"}{\left(x\right)"}=\\ =\frac{\ln 3}{2}\cdot\lim_{x\to +\infty}\frac{3^x\ln 3}{1}=\frac{\ln^2 3}{2}\cdot\lim_{x\to +\infty}3^x=+\infty. $$

    Так как $\lim_{x\to +\infty}\frac{3^x}{x^2}=+\infty$, то $\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{3^n}{n^2}=+\infty$. Так как $\lim_{n\to\infty}u_n\neq 0$, то необходимое условие сходимости ряда не выполнено, т.е. заданный ряд расходится.

    Ответ : ряд расходится.

    Иные примеры рядов, сходимость которых проверяется с помощью необходимого признака сходимости, находятся во второй части этой темы.

    На практике часто не столь важно найти сумму ряда, как ответить на вопрос о сходимости ряда. Для этой цели используются признаки сходимости, основанные на свойствах общего члена ряда.

    Необходимый признак сходимости ряда

    ТЕОРЕМА 1

    Если ряд сходится, то его общий член стремится к нулю при
    , т.е.
    .

    Кратко : если ряд сходится, то его общий член стремится к нулю.

    Доказательство. Пусть ряд сходится и его сумма равна . Для любого частичная сумма



    .

    Тогда . 

    Из доказанного необходимого признака сходимости вытекает достаточный признак расходимости ряда: если при
    общий член ряда не стремится к нулю, то ряд расходится.

    Пример 4.

    Для этого ряда общий член
    и
    .

    Следовательно, данный ряд расходится.

    Пример 5. Исследовать на сходимость ряд

    Очевидно, что общий член этого ряда, вид которого не указан ввиду громоздкости выражения, стремится к нулю при
    , т.е. необходимый признак сходимости ряда выполняется, однако этот ряд расходится, так как его сумма стремится к бесконечности.

    Знакоположительные числовые ряды

    Числовой ряд, все члены которого положительны, называется знакоположительным.

    ТЕОРЕМА 2 (Критерий сходимости знакоположительного ряда)

    Для сходимости знакоположительного ряда необходимо и достаточно, чтобы все его частичные суммы были ограничены сверху одним и тем же числом.

    Доказательство. Так как для любого
    , то, т.е. последовательность
    – монотонно возрастающая, поэтому для существования предела необходимо и достаточно ограничение последовательности сверху каким-либо числом.

    Эта теорема в большей степени имеет теоретическое, чем практическое значение. Далее приведены другие признаки сходимости, имеющие большее применение.

    Достаточные признаки сходимости знакоположительных рядов

    ТЕОРЕМА 3 (Первый признак сравнения)

    Пусть даны два знакоположительных ряда:

    (1)

    (2)

    причем, начиная с некоторого номера
    , для любого
    выполняется неравенство
    Тогда:

    Схематическая запись первого признака сравнения:

    сход.сход.

    расх.расх.

    Доказательство. 1) Так как отбрасывание конечного числа членов ряда не влияет на его сходимость, докажем теорему для случая
    . Пусть для любого
    имеем


    , (3)

    где
    и
    - соответственно частичные суммы рядов (1) и (2).

    Если ряд (2) сходится, то существует число
    . Поскольку при этом последовательность
    - возрастающая, ее предел больше любого из ее членов, т.е.
    для любого . Отсюда из неравенства (3) следует
    . Таким образом, все частичные суммы ряда (1) ограничены сверху числом . Согласно теореме 2 этот ряд сходится.

    2) Действительно, если бы ряд (2) сходился, то по признаку сравнения сходился бы и ряд (1). 

    Для применения этого признака часто используют такие ряды-эталоны, сходимость или расходимость которых известна заранее, например:


    3) - ряд Дирихле (он сходится при
    и расходится при
    ).

    Кроме этого часто используют ряды, которые можно получить с помощью следующих очевидных неравенств:


    ,

    ,
    ,
    .

    Рассмотрим на конкретных примерах схему исследования знакоположительного ряда на сходимость с помощью первого признака сравнения.

    Пример 6. Исследовать ряд
    на сходимость.

    Шаг 1. Проверим знакоположительность ряда:
    для

    Шаг 2. Проверим выполнение необходимого признака сходимости ряда:
    . Так как
    , то

    (если вычисление предела вызывает трудности, то этот шаг можно пропустить).

    Шаг 3. Используем первый признак сравнения. Для этого подберем для данного ряда ряд-эталон. Так как
    , то в качестве эталона можно взять ряд
    , т.е. ряд Дирихле. Этот ряд сходится, так как показатель степени
    . Следовательно, согласно первому признаку сравнения сходится и исследуемый ряд.

    Пример 7. Исследовать ряд
    на сходимость.

    1) Данный ряд знакоположительный, так как
    для

    2) Необходимый признак сходимости ряда выполняется, ибо

    3) Подберем ряд-эталон. Так как
    , то в качестве эталона можно взять геометрический ряд

    . Этот ряд сходится, следовательно, сходится и исследуемый ряд.

    ТЕОРЕМА 4 (Второй признак сравнения)

    Если для знакоположительных рядов и существует отличный от нуля конечный предел
    , то
    ряды сходятся или расходятся одновременно.

    Доказательство. Пусть ряд (2) сходится; докажем, что тогда сходится и ряд (1). Выберем какое-нибудь число , большее, чем . Из условия
    вытекает существование такого номера , что для всех
    справедливо неравенство
    , или, что то же,

    (4)

    Отбросив в рядах (1) и (2) первые членов (что не влияет на сходимость), можно считать, что неравенство (4) справедливо для всех
    Но ряд с общим членом
    сходится в силу сходимости ряда (2). Согласно первому признаку сравнения, из неравенства (4) следует сходимость ряда (1).

    Пусть теперь сходится ряд (1); докажем сходимость ряда (2). Для этого следует просто поменять ролями заданные ряды. Так как

    то, по доказанному выше, из сходимости ряда (1) должна следовать сходимость ряда (2). 

    Если
    при
    (необходимый признак сходимости), то из условия
    , следует, чтои– бесконечно малые одного порядка малости (эквивалентные при
    ). Следовательно, если дан ряд , где
    при
    , то для этого ряда можно брать ряд-эталон , где общий член имеет тот же порядок малости, что и общий член данного ряда.

    При выборе ряда-эталона можно пользоваться следующей таблицей эквивалентных бесконечно малых при
    :

    1)
    ; 4)
    ;

    2)
    ; 5)
    ;

    3)
    ; 6)
    .

    Пример 8. Исследовать на сходимость ряд

    .


    для любого
    .

    Так как
    , то возьмем в качестве ряда-эталона гармонический расходящийся ряд
    . Поскольку предел отношения общих членовиконечен и отличен от нуля (он равен 1), то на основании второго признака сравнения данный ряд расходится.

    Пример 9.
    по двум признакам сравнения.

    Данный ряд знакоположительный, так как
    , и
    . Поскольку
    , то в качестве ряда-эталона можно брать гармонический ряд. Этот ряд расходится и следовательно, по первому признаку сравнения, исследуемый ряд также расходится.

    Так как для данного ряда и ряда-эталона выполняется условие
    (здесь использован 1-й замечательный предел), то на основании второго признака сравнения ряд
    – расходится.

    ТЕОРЕМА 5 (Признак Даламбера)

    существует конечный предел
    , то ряд сходится при
    и расходится при
    .

    Доказательство. Пусть
    . Возьмем какое-либо число, заключенное между и 1:
    . Из условия
    следует, что начиная с некоторого номера выполняется неравенство

    ;
    ;
    (5)

    Рассмотрим ряд

    Согласно (5) все члены ряда (6) не превосходят соответствующих членов бесконечной геометрической прогрессии
    Поскольку
    , эта прогрессия является сходящейся. Отсюда в силу первого признака сравнения вытекает сходимость ряда

    Случай
    рассмотрите самостоятельно.

    Замечания :


    следует, что остаток ряда

    .

      Признак Даламбера удобен на практике тогда, когда общий член ряда содержит показательную функцию или факториал.

    Пример 10. Исследовать на сходимость ряд по признаку Даламбера.

    Данный ряд знакоположительный и

    .

    (Здесь при вычислении дважды применено правило Лопиталя).

    то по признаку Даламбера данный ряд сходится.

    Пример 11. .

    Данный ряд знакоположительный и
    . Поскольку

    то данный ряд сходится.

    ТЕОРЕМА 6 (Признак Коши)

    Если для знакоположительного ряда существует конечный предел
    , то при
    ряд сходится, а при
    ряд расходится.

    Доказательство аналогично теореме 5.

    Замечания :


    Пример 12. Исследовать на сходимость ряд
    .

    Данный ряд знакоположительный, так как
    для любого
    . Поскольку вычисление предела
    вызывает определенные трудности, то проверку выполнимости необходимого признака сходимости ряда опускаем.

    то по признаку Коши данный ряд расходится.

    ТЕОРЕМА 7 (Интегральный признак сходимости Маклорена - Коши)

    Пусть дан ряд

    члены которого положительны и не возрастают:

    Пусть, далее
    - функция, которая определена для всех вещественных
    , непрерывна, не возрастает и

    Данная статья представляет собой структурированную и подробную информацию, которая может пригодиться во время разбора упражнений и задач. Мы рассмотрим тему числовых рядов.

    Данная статья начинается с основных определений и понятий. Далее мы стандартные варианты и изучим основные формулы. Для того, чтобы закрепить материал, в статье приведены основные примеры и задачи.

    Базовые тезисы

    Для начала представим систему: a 1 , a 2 . . . , a n , . . . , где a k ∈ R , k = 1 , 2 . . . .

    Для примера, возьмем такие числа, как: 6 , 3 , - 3 2 , 3 4 , 3 8 , - 3 16 , . . . .

    Определение 1

    Числовой ряд – это сумма членов ∑ a k k = 1 ∞ = a 1 + a 2 + . . . + a n + . . . .

    Чтобы лучше понять определение, рассмотрим данный случай, в котором q = - 0 . 5: 8 - 4 + 2 - 1 + 1 2 - 1 4 + . . . = ∑ k = 1 ∞ (- 16) · - 1 2 k .

    Определение 2

    a k является общим или k –ым членом ряда.

    Он выглядит примерно таким образом - 16 · - 1 2 k .

    Определение 3

    Частичная сумма ряда выглядит примерно таким образом S n = a 1 + a 2 + . . . + a n , в которой n –любое число. S n является n -ой суммой ряда.

    Например, ∑ k = 1 ∞ (- 16) · - 1 2 k есть S 4 = 8 - 4 + 2 - 1 = 5 .

    S 1 , S 2 , . . . , S n , . . . образуют бесконечную последовательность числового ряда.

    Для ряда n –ая сумму находится по формуле S n = a 1 · (1 - q n) 1 - q = 8 · 1 - - 1 2 n 1 - - 1 2 = 16 3 · 1 - - 1 2 n . Используем следующую последовательность частичных сумм: 8 , 4 , 6 , 5 , . . . , 16 3 · 1 - - 1 2 n , . . . .

    Определение 4

    Ряд ∑ k = 1 ∞ a k является сходящимся тогда, когда последовательность обладает конечным пределом S = lim S n n → + ∞ . Если предела нет или последовательность бесконечна, то ряд ∑ k = 1 ∞ a k называется расходящимся.

    Определение 5

    Суммой сходящегося ряда ∑ k = 1 ∞ a k является предел последовательности ∑ k = 1 ∞ a k = lim S n n → + ∞ = S .

    В данном примере lim S n n → + ∞ = lim 16 3 т → + ∞ · 1 - 1 2 n = 16 3 · lim n → + ∞ 1 - - 1 2 n = 16 3 , ряд ∑ k = 1 ∞ (- 16) · - 1 2 k сходится. Сумма равна 16 3: ∑ k = 1 ∞ (- 16) · - 1 2 k = 16 3 .

    Пример 1

    В качестве примера расходящегося ряда можно привести сумму геометрической прогрессии со знаменателем большем, чем единица: 1 + 2 + 4 + 8 + . . . + 2 n - 1 + . . . = ∑ k = 1 ∞ 2 k - 1 .

    n -ая частичная сумма определяется выражением S n = a 1 · (1 - q n) 1 - q = 1 · (1 - 2 n) 1 - 2 = 2 n - 1 , а предел частичных сумм бесконечен: lim n → + ∞ S n = lim n → + ∞ (2 n - 1) = + ∞ .

    Еще одим примером расходящегося числового ряда является сумма вида ∑ k = 1 ∞ 5 = 5 + 5 + . . . . В этом случае n -ая частичная сумма может быть вычислена как S n = 5 n . Предел частичных сумм бесконечен lim n → + ∞ S n = lim n → + ∞ 5 n = + ∞ .

    Определение 6

    Сумма подобного вида как ∑ k = 1 ∞ = 1 + 1 2 + 1 3 + . . . + 1 n + . . . – это гармонический числовой ряд.

    Определение 7

    Сумма ∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + . . . + 1 n s + . . . , где s –действительное число, является обобщенно гармоническим числовым рядом.

    Определения, рассмотренные выше, помогут вам для решения большинства примеров и задач.

    Для того, чтобы дополнить определения, необходимо доказать определенные уравнения.

    1. ∑ k = 1 ∞ 1 k – расходящийся.

    Действуем методом от обратного. Если он сходится, то предел конечен. Можно записать уравнение как lim n → + ∞ S n = S и lim n → + ∞ S 2 n = S . После определенных действий мы получаем равенство l i m n → + ∞ (S 2 n - S n) = 0 .

    Напротив,

    S 2 n - S n = 1 + 1 2 + 1 3 + . . . + 1 n + 1 n + 1 + 1 n + 2 + . . . + 1 2 n - - 1 + 1 2 + 1 3 + . . . + 1 n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n

    Справедливы следующие неравенства 1 n + 1 > 1 2 n , 1 n + 1 > 1 2 n , . . . , 1 2 n - 1 > 1 2 n . Получаем, что S 2 n - S n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n > 1 2 n + 1 2 n + . . . + 1 2 n = n 2 n = 1 2 . Выражение S 2 n - S n > 1 2 указывает на то, что lim n → + ∞ (S 2 n - S n) = 0 не достигается. Ряд расходящийся.

    1. b 1 + b 1 q + b 1 q 2 + . . . + b 1 q n + . . . = ∑ k = 1 ∞ b 1 q k - 1

    Необходимо подтвердить, что сумма последовательности чисел сходится при q < 1 , и расходится при q ≥ 1 .

    Согласно приведенным выше определениям, сумма n членов определяется согласно формуле S n = b 1 · (q n - 1) q - 1 .

    Если q < 1 верно

    lim n → + ∞ S n = lim n → + ∞ b 1 · q n - 1 q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · 0 - 1 q - 1 = b 1 q - 1

    Мы доказали, что числовой ряд сходится.

    При q = 1 b 1 + b 1 + b 1 + . . . ∑ k = 1 ∞ b 1 . Суммы можно отыскать с использованием формулы S n = b 1 · n , предел бесконечен lim n → + ∞ S n = lim n → + ∞ b 1 · n = ∞ . В представленном варианте ряд расходится.

    Если q = - 1 , то ряд выглядит как b 1 - b 1 + b 1 - . . . = ∑ k = 1 ∞ b 1 (- 1) k + 1 . Частичные суммы выглядят как S n = b 1 для нечетных n , и S n = 0 для четных n . Рассмотрев данный случай, мы удостоверимся, что предела нет и ряд является расходящимся.

    При q > 1 справедливо lim n → + ∞ S n = lim n → + ∞ b 1 · (q n - 1) q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · ∞ - 1 q - 1 = ∞

    Мы доказали, что числовой ряд расходится.

    1. Ряд ∑ k = 1 ∞ 1 k s сходится, если s > 1 и расходится, если s ≤ 1 .

    Для s = 1 получаем ∑ k = 1 ∞ 1 k , ряд расходится.

    При s < 1 получаем 1 k s ≥ 1 k для k , натурального числа. Так как ряд является расходящимся ∑ k = 1 ∞ 1 k , то предела нет. Следуя этому, последовательность ∑ k = 1 ∞ 1 k s неограниченна. Делаем вывод, что выбранный ряд расходится при s < 1 .

    Необходимо предоставить доказательства, что ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 .

    Представим S 2 n - 1 - S n - 1:

    S 2 n - 1 - S n - 1 = 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s + 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s - - 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s

    Допустим, что 1 (n + 1) s < 1 n s , 1 (n + 2) s < 1 n s , . . . , 1 (2 n - 1) s < 1 n s , тогда S 2 n - 1 - S n - 1 = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s < < 1 n s + 1 n s + . . . + 1 n s = n n s = 1 n s - 1

    Представим уравнение для чисел, которые являются натуральными и четными n = 2: S 2 n - 1 - S n - 1 = S 3 - S 1 = 1 2 s + 1 3 s < 1 2 s - 1 n = 4: S 2 n - 1 - S n - 1 = S 7 - S 3 = 1 4 s + 1 5 s + 1 6 s + 1 7 s < 1 4 s - 1 = 1 2 s - 1 2 n = 8: S 2 n - 1 - S n - 1 = S 15 - S 7 = 1 8 s + 1 9 s + . . . + 1 15 s < 1 8 s - 1 = 1 2 s - 1 3 . . .

    Получаем:

    ∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + 1 4 s + . . . + 1 7 s + 1 8 s + . . . + 1 15 s + . . . = = 1 + S 3 - S 1 + S 7 - S 3 + S 15 + S 7 + . . . < < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . .

    Выражение 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . – это сумма геометрической прогрессии q = 1 2 s - 1 . Согласно исходным данным при s > 1 , то 0 < q < 1 . Получаем, ∑ k = 1 ∞ < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . = 1 1 - q = 1 1 - 1 2 s - 1 . Последовательность ряда при s > 1 увеличивается и ограничивается сверху 1 1 - 1 2 s - 1 . Представим, что есть предел и ряд является сходящимся ∑ k = 1 ∞ 1 k s .

    Определение 8

    Ряд ∑ k = 1 ∞ a k знакоположителен в том случае , если его члены > 0 a k > 0 , k = 1 , 2 , . . . .

    Ряд ∑ k = 1 ∞ b k знакочередующийся , если знаки чисел отличаются. Данный пример представлен как ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k · a k или ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k + 1 · a k , где a k > 0 , k = 1 , 2 , . . . .

    Ряд ∑ k = 1 ∞ b k знакопеременный , так как в нем множество чисел, отрицательных и положительных.

    Второй вариант ряд – это частный случай третьего варианта.

    Приведем примеры для каждого случая соответственно:

    6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . . 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . .

    Для третьего варианта также можно определить абсолютную и условную сходимость.

    Определение 9

    Знакочередующийся ряд ∑ k = 1 ∞ b k абсолютно сходится в том случае, когда ∑ k = 1 ∞ b k также считается сходящимся.

    Подробно разберем несколько характерных вариантов

    Пример 2

    Если ряды 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . и 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . . определяются как сходящиеся, то верно считать, что 6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . .

    Определение 10

    Знакопеременный ряд ∑ k = 1 ∞ b k считается условно сходящимся в том случае, если ∑ k = 1 ∞ b k – расходящийся, а ряд ∑ k = 1 ∞ b k считается сходящимся.

    Пример 3

    Подробно разберем вариант ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . . Ряд ∑ k = 1 ∞ (- 1) k + 1 k = ∑ k = 1 ∞ 1 k , который состоит из абсолютных величин, определяется как расходящийся. Этот вариант считается сходящимся, так как это легко определить. Из данного примера мы узнаем, что ряд ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . будет считаться условно сходящимся.

    Особенности сходящихся рядов

    Проанализируем свойства для определенных случаев

    1. Если ∑ k = 1 ∞ a k будет сходится, то и ряд ∑ k = m + 1 ∞ a k также признается сходящимся. Можно отметить, что ряд без m членов также считается сходящимся. В случае, если мы добавляем к ∑ k = m + 1 ∞ a k несколько чисел, то получившийся результат также будет сходящимся.
    2. Если ∑ k = 1 ∞ a k сходится и сумма = S , то сходится и ряд ∑ k = 1 ∞ A · a k , ∑ k = 1 ∞ A · a k = A · S , где A –постоянная.
    3. Если ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k являются сходящимися, суммы A и B тоже, то и ряды ∑ k = 1 ∞ a k + b k и ∑ k = 1 ∞ a k - b k также сходятся. Суммы будут равняться A + B и A - B соответственно.
    Пример 4

    Определить, что ряд сходится ∑ k = 1 ∞ 2 3 k · k 3 .

    Изменим выражение ∑ k = 1 ∞ 2 3 k · k 3 = ∑ k = 1 ∞ 2 3 · 1 k 4 3 . Ряд ∑ k = 1 ∞ 1 k 4 3 считается сходящимся, так как ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . В соответствии со вторым свойством, ∑ k = 1 ∞ 2 3 · 1 k 4 3 .

    Пример 5

    Определить, сходится ли ряд ∑ n = 1 ∞ 3 + n n 5 2 .

    Преобразуем изначальный вариант ∑ n = 1 ∞ 3 + n n 5 2 = ∑ n = 1 ∞ 3 n 5 2 + n n 2 = ∑ n = 1 ∞ 3 n 5 2 + ∑ n = 1 ∞ 1 n 2 .

    Получаем сумму ∑ n = 1 ∞ 3 n 5 2 и ∑ n = 1 ∞ 1 n 2 . Каждый ряд признается сходящимся согласно свойству. Так, как ряды сходятся, то исходный вариант тоже.

    Пример 6

    Вычислить, сходится ли ряд 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . и вычислить сумму.

    Разложим исходный вариант:

    1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = = 1 + 1 2 + 1 4 + 1 8 + . . . - 2 · 3 + 1 + 1 3 + 1 9 + . . . = = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2

    Каждый ряд сходится, так как является одним из членов числовой последовательности. Согласно третьему свойству, мы можем вычислить, что исходный вариант также является сходящимся. Вычисляем сумму: Первый член ряда ∑ k = 1 ∞ 1 2 k - 1 = 1 , а знаменатель = 0 . 5 , за этим следует, ∑ k = 1 ∞ 1 2 k - 1 = 1 1 - 0 . 5 = 2 . Первый член ∑ k = 1 ∞ 1 3 k - 2 = 3 , а знаменатель убывающей числовой последовательности = 1 3 . Получаем: ∑ k = 1 ∞ 1 3 k - 2 = 3 1 - 1 3 = 9 2 .

    Используем выражения, полученные выше, для того, чтобы определить сумму 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2 = 2 - 2 · 9 2 = - 7

    Необходимое условие для определения, является ли ряд сходящимся

    Определение 11

    Если ряд ∑ k = 1 ∞ a k является сходящимся, то предел его k -ого члена = 0: lim k → + ∞ a k = 0 .

    Если мы проверим любой вариант, то нужно не забывать о непременном условии. Если оно не выполняется, то ряд расходится. Если lim k → + ∞ a k ≠ 0 , то ряд расходящийся.

    Следует уточнить, что условие важно, но не достаточно. Если равенство lim k → + ∞ a k = 0 выполняется, то это не гарантирует, что ∑ k = 1 ∞ a k является сходящимся.

    Приведем пример. Для гармонического ряда ∑ k = 1 ∞ 1 k условие выполняется lim k → + ∞ 1 k = 0 , но ряд все равно расходится.

    Пример 7

    Определить сходимость ∑ n = 1 ∞ n 2 1 + n .

    Проверим исходное выражение на выполнение условия lim n → + ∞ n 2 1 + n = lim n → + ∞ n 2 n 2 1 n 2 + 1 n = lim n → + ∞ 1 1 n 2 + 1 n = 1 + 0 + 0 = + ∞ ≠ 0

    Предел n -ого члена не равен 0 . Мы доказали, что данный ряд расходится.

    Как определить сходимость знакоположительного ряда.

    Если постоянно пользоваться указанными признаками, придется постоянно вычислять пределы. Данный раздел поможет избежать сложностей во время решения примеров и задач. Для того, чтобы определить сходимость знакоположительного ряда, существует определенное условие.

    Для сходимости знакоположительного ∑ k = 1 ∞ a k , a k > 0 ∀ k = 1 , 2 , 3 , . . . нужно определять ограниченную последовательность сумм.

    Как сравнивать ряды

    Существует несколько признаков сравнения рядов. Мы сравниваем ряд, сходимость которого предлагается определить, с тем рядом, сходимость которого известна.

    Первый признак

    ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные ряды. Неравенство a k ≤ b k справедливо для k = 1, 2, 3, ... Из этого следует, что из ряда ∑ k = 1 ∞ b k мы можем получить ∑ k = 1 ∞ a k . Так как ∑ k = 1 ∞ a k расходится, то ряд ∑ k = 1 ∞ b k можно определить как расходящийся.

    Данное правило постоянно используется для решения уравнений и является серьезным аргументом, которое поможет определить сходимость. Сложности могут состоять в том, что подобрать подходящий пример для сравнения можно найти далеко не в каждом случае. Довольно часто ряд выбирается по принципу, согласно которому показатель k -ого члена будет равняться результату вычитания показателей степеней числителя и знаменателя k -ого члена ряда. Допустим, что a k = k 2 + 3 4 k 2 + 5 , разность будет равна 2 – 3 = - 1 . В данном случае можно определить, что для сравнения необходим ряд с k -ым членом b k = k - 1 = 1 k , который является гармоническим.

    Для того, чтобы закрепить полученный материал, детально рассмотрим пару типичных вариантов.

    Пример 8

    Определить, каким является ряд ∑ k = 1 ∞ 1 k - 1 2 .

    Так как предел = 0 lim k → + ∞ 1 k - 1 2 = 0 , мы выполнили необходимое условие. Неравенство будет справедливым 1 k < 1 k - 1 2 для k , которые являются натуральными. Из предыдущих пунктов мы узнали, что гармонический ряд ∑ k = 1 ∞ 1 k – расходящийся. Согласно первому признаку, можно доказать, что исходный вариант является расходящимся.

    Пример 9

    Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 1 k 3 + 3 k - 1 .

    В данном примере выполняется необходимое условие, так как lim k → + ∞ 1 k 3 + 3 k - 1 = 0 . Представляем в виде неравенства 1 k 3 + 3 k - 1 < 1 k 3 для любого значения k . Ряд ∑ k = 1 ∞ 1 k 3 является сходящимся, так как гармонический ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . Согласно первому признаку, мы можем сделать вывод, что числовой ряд является сходящимся.

    Пример 10

    Определить, является каким является ряд ∑ k = 3 ∞ 1 k ln (ln k) . lim k → + ∞ 1 k ln (ln k) = 1 + ∞ + ∞ = 0 .

    В данном варианте можно отметить выполнение нужного условия. Определим ряд для сравнения. Например, ∑ k = 1 ∞ 1 k s . Чтобы определить, чему равна степень, расммотрим последовательность { ln (ln k) } , k = 3 , 4 , 5 . . . . Члены последовательности ln (ln 3) , ln (ln 4) , ln (ln 5) , . . . увеличивается до бесконечности. Проанализировав уравнение, можно отметить, что, взяв в качестве значения N = 1619 , то члены последовательности > 2 . Для данной последовательности будет справедливо неравенство 1 k ln (ln k) < 1 k 2 . Ряд ∑ k = N ∞ 1 k 2 сходится согласно первому признаку, так как ряд ∑ k = 1 ∞ 1 k 2 тоже сходящийся. Отметим, что согласно первому признаку ряд ∑ k = N ∞ 1 k ln (ln k) сходящийся. Можно сделать вывод, что ряд ∑ k = 3 ∞ 1 k ln (ln k) также сходящийся.

    Второй признак

    Допустим, что ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные числовые ряды.

    Если lim k → + ∞ a k b k ≠ ∞ , то ряд ∑ k = 1 ∞ b k сходится, и ∑ k = 1 ∞ a k сходится также.

    Если lim k → + ∞ a k b k ≠ 0 , то так как ряд ∑ k = 1 ∞ b k расходится, то ∑ k = 1 ∞ a k также расходится.

    Если lim k → + ∞ a k b k ≠ ∞ и lim k → + ∞ a k b k ≠ 0 , то сходимость или расходимость ряда означает сходимость или расходимость другого.

    Рассмотрим ∑ k = 1 ∞ 1 k 3 + 3 k - 1 с помощью второго признака. Для сравнения ∑ k = 1 ∞ b k возьмем сходящийся ряд ∑ k = 1 ∞ 1 k 3 . Определим предел: lim k → + ∞ a k b k = lim k → + ∞ 1 k 3 + 3 k - 1 1 k 3 = lim k → + ∞ k 3 k 3 + 3 k - 1 = 1

    Согласно второму признаку можно определить, что сходящийся ряд ∑ k = 1 ∞ 1 k 3 означается, что первоначальный вариант также сходится.

    Пример 11

    Определить, каким является ряд ∑ n = 1 ∞ k 2 + 3 4 k 3 + 5 .

    Проанализируем необходимое условие lim k → ∞ k 2 + 3 4 k 3 + 5 = 0 , которое в данном варианте выполняется. Согласно второму признаку, возьмем ряд ∑ k = 1 ∞ 1 k . Ищем предел: lim k → + ∞ k 2 + 3 4 k 3 + 5 1 k = lim k → + ∞ k 3 + 3 k 4 k 3 + 5 = 1 4

    Согласно приведенным выше тезисам, расходящийся ряд влечет собой расходимость исходного ряда.

    Третий признак

    Рассмотрим третий признак сравнения.

    Допустим, что ∑ k = 1 ∞ a k и _ ∑ k = 1 ∞ b k - знакоположительные числовые ряды. Если условие выполняется для некого номера a k + 1 a k ≤ b k + 1 b k , то сходимость данного ряда ∑ k = 1 ∞ b k означает, что ряд ∑ k = 1 ∞ a k также является сходящимся. Расходящийся ряд ∑ k = 1 ∞ a k влечет за собой расходимость ∑ k = 1 ∞ b k .

    Признак Даламбера

    Представим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд. Если lim k → + ∞ a k + 1 a k < 1 , то ряд является сходящимся, если lim k → + ∞ a k + 1 a k > 1 , то расходящимся.

    Замечание 1

    Признак Даламбера справедлив в том случае, если предел бесконечен.

    Если lim k → + ∞ a k + 1 a k = - ∞ , то ряд является сходящимся, если lim k → ∞ a k + 1 a k = + ∞ , то расходящимся.

    Если lim k → + ∞ a k + 1 a k = 1 , то признак Даламбера не поможет и потребуется провести еще несколько исследований.

    Пример 12

    Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 2 k + 1 2 k по признаку Даламбера.

    Необходимо проверить, выполняется ли необходимое условие сходимости. Вычислим предел, воспользовавшись правилом Лопиталя: lim k → + ∞ 2 k + 1 2 k = ∞ ∞ = lim k → + ∞ 2 k + 1 " 2 k " = lim k → + ∞ 2 2 k · ln 2 = 2 + ∞ · ln 2 = 0

    Мы можем увидеть, что условие выполняется. Воспользуемся признаком Даламбера: lim k → + ∞ = lim k → + ∞ 2 (k + 1) + 1 2 k + 1 2 k + 1 2 k = 1 2 lim k → + ∞ 2 k + 3 2 k + 1 = 1 2 < 1

    Ряд является сходящимся.

    Пример 13

    Определить, является ряд расходящимся ∑ k = 1 ∞ k k k ! .

    Воспользуемся признаком Даламбера для того, чтобы определить рассходимость ряда: lim k → + ∞ a k + 1 a k = lim k → + ∞ (k + 1) k + 1 (k + 1) ! k k k ! = lim k → + ∞ (k + 1) k + 1 · k ! k k · (k + 1) ! = lim k → + ∞ (k + 1) k + 1 k k · (k + 1) = = lim k → + ∞ (k + 1) k k k = lim k → + ∞ k + 1 k k = lim k → + ∞ 1 + 1 k k = e > 1

    Следовательно, ряд является расходящимся.

    Радикальный признак Коши

    Допустим, что ∑ k = 1 ∞ a k - это знакоположительный ряд. Если lim k → + ∞ a k k < 1 , то ряд является сходящимся, если lim k → + ∞ a k k > 1 , то расходящимся.

    Замечание 2

    Если lim k → + ∞ a k k = 1 , то данный признак не дает никакой информации – требуется проведение дополнительного анализа.

    Данный признак может быть использован в примерах, которые легко определить. Случай будет характерным тогда, когда член числового ряда – это показательно степенное выражение.

    Для того, чтобы закрепить полученную информацию, рассмотрим несколько характерных примеров.

    Пример 14

    Определить, является ли знакоположительный ряд ∑ k = 1 ∞ 1 (2 k + 1) k на сходящимся.

    Нужное условие считается выполненным, так как lim k → + ∞ 1 (2 k + 1) k = 1 + ∞ + ∞ = 0 .

    Согласно признаку, рассмотренному выше, получаем lim k → + ∞ a k k = lim k → + ∞ 1 (2 k + 1) k k = lim k → + ∞ 1 2 k + 1 = 0 < 1 . Данный ряд является сходимым.

    Пример 15

    Сходится ли числовой ряд ∑ k = 1 ∞ 1 3 k · 1 + 1 k k 2 .

    Используем признак, описанный в предыдущем пункте lim k → + ∞ 1 3 k · 1 + 1 k k 2 k = 1 3 · lim k → + ∞ 1 + 1 k k = e 3 < 1 , следовательно, числовой ряд сходится.

    Интегральный признак Коши

    Допустим, что ∑ k = 1 ∞ a k является знакоположительным рядом. Необходимо обозначить функцию непрерывного аргумента y = f (x) , которая совпадает a n = f (n) . Если y = f (x) больше нуля, не прерывается и убывает на [ a ; + ∞) , где a ≥ 1

    То в случае, если несобственный интеграл ∫ a + ∞ f (x) d x является сходящимся, то рассматриваемый ряд также сходится. Если же он расходится, то в рассматриваемом примере ряд тоже расходится.

    При проверке убывания функции можно использовать материал, рассмотренный на предыдущих уроках.

    Пример 16

    Рассмотреть пример ∑ k = 2 ∞ 1 k · ln k на сходимость.

    Условие сходимости ряда считается выполненным, так как lim k → + ∞ 1 k · ln k = 1 + ∞ = 0 . Рассмотрим y = 1 x · ln x . Она больше нуля, не прерывается и убывает на [ 2 ; + ∞) . Первые два пункта доподлинно известны, а вот на третьем следует остановиться подробнее. Находим производную: y " = 1 x · ln x " = x · ln x " x · ln x 2 = ln x + x · 1 x x · ln x 2 = - ln x + 1 x · ln x 2 . Она меньше нуля на [ 2 ; + ∞) . Это доказывает тезис о том, что функция является убывающей.

    Собственно, функция y = 1 x · ln x соответствует признакам принципа, который мы рассматривали выше. Воспользуемся им: ∫ 2 + ∞ d x x · ln x = lim A → + ∞ ∫ 2 A d (ln x) ln x = lim A → + ∞ ln (ln x) 2 A = = lim A → + ∞ (ln (ln A) - ln (ln 2)) = ln (ln (+ ∞)) - ln (ln 2) = + ∞

    Согласно полученным результатам, исходный пример расходится, так как несобственный интеграл является расходящимся.

    Пример 17

    Докажите сходимость ряда ∑ k = 1 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 .

    Так как lim k → + ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 = 1 + ∞ = 0 , то условие считается выполненным.

    Начиная с k = 4 , верное выражение 1 (10 k - 9) (ln (5 k + 8)) 3 < 1 (5 k + 8) (ln (5 k + 8)) 3 .

    Если ряд ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 будет считаться сходящимся, то, согласно одному из принципов сравнения, ряд ∑ k = 4 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 также будет считаться сходящимся. Таким образом, мы сможет определить, что исходное выражение также является сходящимся.

    Перейдем к доказательству ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 .

    Так как функция y = 1 5 x + 8 (ln (5 x + 8)) 3 больше нуля, не прерывается и убывает на [ 4 ; + ∞) . Используем признак, описанный в предыдущем пункте:

    ∫ 4 + ∞ d x (5 x + 8) (l n (5 x + 8)) 3 = lim A → + ∞ ∫ 4 A d x (5 x + 8) (ln (5 x + 8)) 3 = = 1 5 · lim A → + ∞ ∫ 4 A d (ln (5 x + 8) (ln (5 x + 8)) 3 = - 1 10 · lim A → + ∞ 1 (ln (5 x + 8)) 2 | 4 A = = - 1 10 · lim A → + ∞ 1 (ln (5 · A + 8)) 2 - 1 (ln (5 · 4 + 8)) 2 = = - 1 10 · 1 + ∞ - 1 (ln 28) 2 = 1 10 · ln 28 2

    В полученном сходящемся ряде, ∫ 4 + ∞ d x (5 x + 8) (ln (5 x + 8)) 3 , можно определить, что ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 также сходится.

    Признак Раабе

    Допустим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд.

    Если lim k → + ∞ k · a k a k + 1 < 1 , то ряд расходится, если lim k → + ∞ k · a k a k + 1 - 1 > 1 , то сходится.

    Данный способ определения можно использовать в том случае, если описанные выше техники не дают видимых результатов.

    Исследование на абсолютную сходимость

    Для исследования берем ∑ k = 1 ∞ b k . Используем знакоположительный ∑ k = 1 ∞ b k . Мы можем использовать любой из подходящих признаков, которые мы описывали выше. Если ряд ∑ k = 1 ∞ b k сходится, то исходный ряд является абсолютно сходящимся.

    Пример 18

    Исследовать ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 на сходимость ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 = ∑ k = 1 ∞ 1 3 k 3 + 2 k - 1 .

    Условие выполняется lim k → + ∞ 1 3 k 3 + 2 k - 1 = 1 + ∞ = 0 . Используем ∑ k = 1 ∞ 1 k 3 2 и воспользуемся вторым признаком: lim k → + ∞ 1 3 k 3 + 2 k - 1 1 k 3 2 = 1 3 .

    Ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 сходится. Исходный ряд также абсолютно сходящийся.

    Расходимость знакопеременных рядов

    Если ряд ∑ k = 1 ∞ b k – расходящийся, то соответствующий знакопеременный ряд ∑ k = 1 ∞ b k либо расходящийся, либо условно сходящийся.

    Лишь признак Даламбера и радикальный признак Коши помогут сделать выводы о ∑ k = 1 ∞ b k по расходимости из модулей ∑ k = 1 ∞ b k . Ряд ∑ k = 1 ∞ b k также расходится, если не выполняется необходимое условие сходимости, то есть, если lim k → ∞ + b k ≠ 0 .

    Пример 19

    Проверить расходимость 1 7 , 2 7 2 , - 6 7 3 , 24 7 4 , 120 7 5 - 720 7 6 , . . . .

    Модуль k -ого члена представлен как b k = k ! 7 k .

    Исследуем ряд ∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k на сходимость по признаку Даламбера: lim k → + ∞ b k + 1 b k = lim k → + ∞ (k + 1) ! 7 k + 1 k ! 7 k = 1 7 · lim k → + ∞ (k + 1) = + ∞ .

    ∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k расходится так же, как и исходный вариант.

    Пример 20

    Является ли ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) сходящимся.

    Рассмотрим на необходимое условие lim k → + ∞ b k = lim k → + ∞ k 2 + 1 ln (k + 1) = ∞ ∞ = lim k → + ∞ = k 2 + 1 " (ln (k + 1)) " = = lim k → + ∞ 2 k 1 k + 1 = lim k → + ∞ 2 k (k + 1) = + ∞ . Условие не выполнено, поэтому ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) ряд расходящийся. Предел был вычислен по правилу Лопиталя.

    Признаки для условной сходимости

    Признак Лейбница

    Определение 12

    Если величины членов знакочередующегося ряда убывают b 1 > b 2 > b 3 > . . . > . . . и предел модуля = 0 при k → + ∞ , то ряд ∑ k = 1 ∞ b k сходится.

    Пример 17

    Рассмотреть ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) на сходимость.

    Ряд представлен как ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) . Нужное условие выполняется lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 . Рассмотрим ∑ k = 1 ∞ 1 k по второму признаку сравнения lim k → + ∞ 2 k + 1 5 k (k + 1) 1 k = lim k → + ∞ 2 k + 1 5 (k + 1) = 2 5

    Получаем, что ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) расходится. Ряд ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) сходится по признаку Лейбница: последовательность 2 · 1 + 1 5 · 1 · 1 1 + 1 = 3 10 , 2 · 2 + 1 5 · 2 · (2 + 1) = 5 30 , 2 · 3 + 1 5 · 3 · 3 + 1 , . . . убывает и lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 .

    Ряд условно сходится.

    Признак Абеля-Дирихле

    Определение 13

    ∑ k = 1 + ∞ u k · v k сходится в том случае, если { u k } не возрастает, а последовательность ∑ k = 1 + ∞ v k ограничена.

    Пример 17

    Исследуйте 1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . на сходимость.

    Представим

    1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . = 1 · 1 + 1 2 · (- 3) + 1 3 · 2 + 1 4 · 1 + 1 5 · (- 3) + 1 6 · = ∑ k = 1 ∞ u k · v k

    где { u k } = 1 , 1 2 , 1 3 , . . . - невозрастающая, а последовательность { v k } = 1 , - 3 , 2 , 1 , - 3 , 2 , . . . ограничена { S k } = 1 , - 2 , 0 , 1 , - 2 , 0 , . . . . Ряд сходится.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter